W. Britton and D. Lockwood, Leprosy, The Lancet, vol.363, issue.9416, pp.1209-1219, 2004.
DOI : 10.1016/S0140-6736(04)15952-7

S. Hunter and P. Brennan, A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity, J Bacteriol, vol.147, pp.728-735, 1981.

M. Daffé and M. Lanéelle, Distribution of Phthiocerol Diester, Phenolic Mycosides and Related Compounds in Mycobacteria, Microbiology, vol.134, issue.7, pp.2049-2055, 1988.
DOI : 10.1099/00221287-134-7-2049

A. Rambukkana, J. Salzer, P. Yurchenco, and E. Tuomanen, Neural Targeting of Mycobacterium leprae Mediated by the G Domain of the Laminin-??2 Chain, Cell, vol.88, issue.6, pp.811-821, 1997.
DOI : 10.1016/S0092-8674(00)81927-3

V. Ng, G. Zanazzi, R. Timpl, J. Talts, and J. Salzer, Role of the Cell Wall Phenolic Glycolipid-1 in the Peripheral Nerve Predilection of Mycobacterium leprae, Cell, vol.103, issue.3, pp.511-524, 2000.
DOI : 10.1016/S0092-8674(00)00142-2

M. Marques, V. Antônio, E. Sarno, P. Brennan, and M. Pessolani, Binding of a2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells, J Med Microbiol, vol.50, pp.23-28, 2001.

M. Neill and S. Klebanoff, The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages, Journal of Experimental Medicine, vol.167, issue.1, pp.30-42, 1988.
DOI : 10.1084/jem.167.1.30

J. Chan, T. Fujiwara, P. Brennan, M. Mcneil, and S. Turco, Microbial glycolipids: possible virulence factors that scavenge oxygen radicals., Proceedings of the National Academy of Sciences, vol.86, issue.7, pp.2453-2457, 1989.
DOI : 10.1073/pnas.86.7.2453

L. Schlesinger and M. Horwitz, Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes, Journal of Experimental Medicine, vol.174, issue.5, pp.1031-1038, 1991.
DOI : 10.1084/jem.174.5.1031

C. Silva and L. Faccioli, Suppression of human monocyte cytokine release by phenolic glycolipid-1 of Mycobacterium leprae, Int J Lepr Other Mycobact Dis, vol.61, pp.107-108, 1993.

K. Hashimoto, Y. Maeda, H. Kimura, A. Masuda, and M. Matsuoka, Mycobacterium leprae Infection in Monocyte-Derived Dendritic Cells and Its Influence on Antigen-Presenting Function, Infection and Immunity, vol.70, issue.9, pp.5167-5176, 2002.
DOI : 10.1128/IAI.70.9.5167-5176.2002

R. Murray, M. Siddiqui, M. Mendillo, J. Krahenbuhl, and G. Kaplan, Mycobacterium leprae Inhibits Dendritic Cell Activation and Maturation, The Journal of Immunology, vol.178, issue.1, pp.338-344, 2007.
DOI : 10.4049/jimmunol.178.1.338

S. Hunter, T. Fujiwara, and P. Brennan, Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae, J Biol Chem, vol.257, pp.15072-15078, 1982.

E. Perez, P. Constant, F. Laval, A. Lemassu, and M. Lanéelle, Molecular Dissection of the Role of Two Methyltransferases in the Biosynthesis of Phenolglycolipids and Phthiocerol Dimycoserosate in the Mycobacterium tuberculosis Complex, Journal of Biological Chemistry, vol.279, issue.41, pp.42584-45592, 2004.
DOI : 10.1074/jbc.M406134200

C. Guilhot and M. Daffé, Polyketides and polyketides-containing glycolipids of Mycobacterium tuberculosis: structure, biosynthesis and biological activities Hanbook of tuberculosis Molecular biology and biochemistry, pp.21-51, 2008.

K. Onwueme, C. Vos, J. Zurita, J. Ferraras, and L. Quadri, The dimycocerosate ester polyketide virulence factors of mycobacteria, Progress in Lipid Research, vol.44, issue.5, pp.259-302, 2005.
DOI : 10.1016/j.plipres.2005.07.001

E. Perez, P. Constant, A. Lemassu, F. Laval, and M. Daffe, Characterization of Three Glycosyltransferases Involved in the Biosynthesis of the Phenolic Glycolipid Antigens from the Mycobacterium tuberculosis Complex, Journal of Biological Chemistry, vol.279, issue.41, pp.42574-42583, 2004.
DOI : 10.1074/jbc.M406246200

S. Cole, R. Brosch, J. Parkhill, T. Garnier, and C. Churcher, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.25, issue.6685, pp.537-544, 1998.
DOI : 10.1038/31159

S. Bardarov, J. Kriakov, C. Carriere, S. Yu, and C. Vaamonde, Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.94, issue.20, pp.10961-10966, 1997.
DOI : 10.1073/pnas.94.20.10961

W. Malaga, E. Perez, and C. Guilhot, Production of unmarked mutations in mycobacteria using site-specific recombination, FEMS Microbiology Letters, vol.219, issue.2, pp.261-268, 2003.
DOI : 10.1016/S0378-1097(03)00003-X

W. Malaga, P. Constant, D. Euphrasie, A. Cataldi, and M. Daffé, Deciphering the Genetic Bases of the Structural Diversity of Phenolic Glycolipids in Strains of the Mycobacterium tuberculosis Complex, Journal of Biological Chemistry, vol.283, issue.22, pp.15177-15184, 2008.
DOI : 10.1074/jbc.M710275200

P. Constant, E. Perez, W. Malaga, M. Lanéelle, and O. Saurel, Role of the pks15/1 Gene in the Biosynthesis of Phenolglycolipids in the Mycobacterium tuberculosis Complex. EVIDENCE THAT ALL STRAINS SYNTHESIZE GLYCOSYLATED p-HYDROXYBENZOIC METHYL ESTERS AND THAT STRAINS DEVOID OF PHENOLGLYCOLIPIDS HARBOR A FRAMESHIFT MUTATION IN THE pks15/1 GENE, Journal of Biological Chemistry, vol.277, issue.41, pp.38148-38158, 2002.
DOI : 10.1074/jbc.M206538200

C. Stover, V. De-la-cruz, T. Fuerst, J. Burlein, and L. Benson, New use of BCG for recombinant vaccines, Nature, vol.351, issue.6326, pp.456-460, 1991.
DOI : 10.1038/351456a0

M. Daffé and M. Lanéelle, Diglycosyl phenol phthiocerol diester of Mycobacterium leprae, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1002, issue.3, pp.333-337, 1989.
DOI : 10.1016/0005-2760(89)90347-0

L. Cabec, V. Cols, C. Maridonneau-parini, and I. , Nonopsonic Phagocytosis of Zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) Involves Distinct Molecular Determinants and Is or Is Not Coupled with NADPH Oxidase Activation, Infection and Immunity, vol.68, issue.8, pp.4736-4745, 2000.
DOI : 10.1128/IAI.68.8.4736-4745.2000

URL : https://hal.archives-ouvertes.fr/hal-00178907

C. Cywes, N. Godenir, H. Hoppe, R. Scholle, and L. Steyn, Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in chinese hamster ovary cells, Infect Immun, vol.64, pp.5373-5383, 1996.

L. Schlesinger and M. Horwitz, Phagocytosis of leprosy bacilli is mediated by complement receptors CR1 and CR3 on human monocytes and complement component C3 in serum., Journal of Clinical Investigation, vol.85, issue.4, pp.1304-1314, 1990.
DOI : 10.1172/JCI114568

M. Diamond, J. Garcia-aguilar, J. Bickfodt, A. Corbi, and T. Springer, The I domain is a major recognition site on the leukocyte integrin Mac- 1 (CD11b/CD18) for four distinct adhesion ligands, The Journal of Cell Biology, vol.120, issue.4, pp.1031-1043, 1993.
DOI : 10.1083/jcb.120.4.1031

J. Ernst, Macrophage receptors for Mycobacterium tuberculosis, Infect Immun, vol.66, pp.1277-1281, 1998.

K. Sendide, N. Reiner, J. Lee, S. Bourgoin, and A. Talal, Cross-Talk between CD14 and Complement Receptor 3 Promotes Phagocytosis of Mycobacteria: Regulation by Phosphatidylinositol 3-Kinase and Cytohesin-1, The Journal of Immunology, vol.174, issue.7, 2005.
DOI : 10.4049/jimmunol.174.7.4210

B. Thornton, V. Vetvicka, M. Pitman, R. Goldman, and G. Ross, Analysis of the sugar specificity and molecular location of the b-glucan-biding lectin site of complement receptor type 3 (CD11b, CD18), J Immunol, vol.156, pp.1235-1246, 1996.

A. Morelli, A. Larregina, W. Shufesky, A. Zahorchak, and A. Logar, Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production, Blood, vol.101, issue.2, pp.611-620, 2003.
DOI : 10.1182/blood-2002-06-1769

A. Medvedev, T. Flo, R. Ingalls, D. Golenbock, and G. Teti, Involvment of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappa B activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls, J Immunol, vol.160, pp.4535-4542, 1998.

T. Marth and B. Kelsall, Regulation of Interleukin-12 by Complement Receptor 3 Signaling, The Journal of Experimental Medicine, vol.80, issue.11, pp.1987-1995, 1997.
DOI : 10.1084/jem.183.2.515

T. Brandhorst, M. Wüthrich, B. Finkel-jimenez, T. Warner, and B. Klein, Exploiting Type 3 Complement Receptor for TNF-?? Suppression, Immune Evasion, and Progressive Pulmonary Fungal Infection, The Journal of Immunology, vol.173, issue.12, pp.7444-7453, 2004.
DOI : 10.4049/jimmunol.173.12.7444

C. Villé and M. Gastambide-odier, Le 3-O-m??thyl-l-rhamnose, sucre isol?? du mycoside G de Mycobacterium marinum, Carbohydrate Research, vol.12, issue.1, pp.97-107, 1970.
DOI : 10.1016/S0008-6215(00)80229-3

M. Daffé, A. Varnerot, V. Lévy-frébault, and V. , The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications, Journal of General Microbiology, vol.138, issue.1, pp.131-137, 1992.
DOI : 10.1099/00221287-138-1-131

K. Eiglmeier, N. Honoré, S. Woods, B. Caudron, and S. Cole, Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae, Molecular Microbiology, vol.6, issue.2, pp.197-206, 1993.
DOI : 10.1073/pnas.85.12.4267

L. Dantec, C. Winter, N. Gicquel, B. Vincent, V. Picardeau et al., Genomic Sequence and Transcriptional Analysis of a 23-Kilobase Mycobacterial Linear Plasmid: Evidence for Horizontal Transfer and Identification of Plasmid Maintenance Systems, Journal of Bacteriology, vol.183, issue.7, pp.2157-2164, 2001.
DOI : 10.1128/JB.183.7.2157-2164.2001

S. Bardarov, B. S. Jr, M. Pavelka, V. Samdandamurthy, and M. Larsen, Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis, Microbiology, vol.148, issue.10, pp.3007-3017, 2002.
DOI : 10.1099/00221287-148-10-3007

C. Astarie-dequeker, L. Guyader, L. Malaga, W. Seaphanh, F. Chalut et al., Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids, PLoS Pathogens, vol.393, issue.7, p.1000289, 2009.
DOI : 10.1371/journal.ppat.1000289.s002