M. J. Coloma, H. J. Lee, A. Kurihara, E. M. Landaw, R. J. Boado et al., Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor, Pharmaceutical Research, vol.17, issue.3, pp.266-74, 2000.
DOI : 10.1023/A:1007592720793

F. Bard, C. Cannon, R. Barbour, R. L. Burke, D. Games et al., Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease, Nature Medicine, vol.6, issue.8, pp.916-91078682, 1038.
DOI : 10.1038/78682

J. Niewoehner, B. Bohrmann, L. Collin, E. Urich, H. Sade et al., Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle, Neuron, vol.81, issue.1, pp.81-130, 2014.
DOI : 10.1016/j.neuron.2013.10.061

R. J. Boado, E. K. Hui, J. Z. Lu, R. K. Sumbria, and W. M. Pardridge, Blood-Brain Barrier Molecular Trojan Horse Enables Imaging of Brain Uptake of Radioiodinated Recombinant Protein in the Rhesus Monkey, Bioconjugate Chemistry, vol.24, issue.10, pp.1741-1750, 2013.
DOI : 10.1021/bc400319d

J. A. Couch, Y. J. Yu, Y. Zhang, J. M. Tarrant, R. N. Fuji et al., Addressing Safety Liabilities of TfR Bispecific Antibodies That Cross the Blood-Brain Barrier, Science Translational Medicine, vol.5, issue.183, pp.183-57, 2013.
DOI : 10.1126/scitranslmed.3005338

S. Ohshima-hosoyama, H. Simmons, N. Goecks, V. Joers, C. R. Swanson et al., A Monoclonal Antibody-GDNF Fusion Protein Is Not Neuroprotective and Is Associated with Proliferative Pancreatic Lesions in Parkinsonian Monkeys, PLoS ONE, vol.23, issue.6
DOI : 10.1371/journal.pone.0039036.t001

M. D. Santin, T. Debeir, S. L. Bridal, T. Rooney, and M. Dhenain, Fast in vivo imaging of amyloid plaques using ??-MRI Gd-staining combined with ultrasound-induced blood???brain barrier opening, NeuroImage, vol.79, pp.288-94, 2013.
DOI : 10.1016/j.neuroimage.2013.04.106

B. Matharu, N. Spencer, F. Howe, and B. Austen, Gadolinium-complexed A??-binding contrast agents for MRI diagnosis of Alzheimer's Disease, Neuropeptides, vol.53, 2015.
DOI : 10.1016/j.npep.2015.07.001

E. M. Sigurdsson, Y. Z. Wadghiri, L. Mosconi, J. Blind, E. Knudsen et al., A non-toxic ligand for voxel-based MRI analysis of plaques in AD transgenic mice, Neurobiology of Aging, vol.29, issue.6, pp.836-847, 2008.
DOI : 10.1016/j.neurobiolaging.2006.12.018

A. Rodriguez, S. B. Tatter, and W. Debinski, Neurosurgical Techniques for Disruption of the Blood???Brain Barrier for Glioblastoma Treatment, Pharmaceutics, vol.7, issue.3, pp.175-87, 2015.
DOI : 10.3390/pharmaceutics7030175

C. Hamers-casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers et al., Naturally occurring antibodies devoid of light chains, Nature, vol.363, issue.6428, pp.446-454, 1993.
DOI : 10.1038/363446a0

S. Muyldermans, Nanobodies: Natural Single-Domain Antibodies, Annual Review of Biochemistry, vol.82, issue.1, p.20
DOI : 10.1146/annurev-biochem-063011-092449

C. Perruchini, F. Pecorari, J. Bourgeois, C. Duyckaerts, F. Rougeon et al., Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies, Acta Neuropathologica, vol.4, issue.5, pp.685-95, 2009.
DOI : 10.1007/s00401-009-0572-6

URL : https://hal.archives-ouvertes.fr/pasteur-00429632

V. Cortez-retamozo, M. Lauwereys, G. Hassanzadeh-gh, M. Gobert, K. Conrath et al., Efficient tumor targeting by single-domain antibody fragments of camels, International Journal of Cancer, vol.78, issue.3, pp.98-456, 2002.
DOI : 10.1002/ijc.10212

Z. Li, B. Krippendorff, S. Sharma, A. C. Walz, T. Lavé et al., Influence of molecular size on tissue distribution of antibody fragments, mAbs, vol.40, issue.1, pp.113-122, 2015.
DOI : 10.1152/ajprenal.00171.2004

U. Rothbauer, K. Zolghadr, S. Tillib, D. Nowak, L. Schermelleh et al., Targeting and tracing antigens in live cells with fluorescent nanobodies, Nature Methods, vol.414, issue.11, pp.887-896, 2006.
DOI : 10.1038/nmeth953

J. Helma, K. Schmidthals, V. Lux, S. Nüske, A. M. Scholz et al., Direct and Dynamic Detection of HIV-1 in Living Cells, PLoS ONE, vol.12, issue.11
DOI : 10.1371/journal.pone.0050026.s001

T. Li, J. Bourgeois, S. Celli, F. Glacial, A. Sourd et al., Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging, The FASEB Journal, vol.26, issue.10, pp.3969-7911, 2012.
DOI : 10.1096/fj.11-201384

URL : https://hal.archives-ouvertes.fr/pasteur-01373103

I. Van-audenhove, K. Van-impe, D. Ruano-gallego, S. De-clercq, K. De-muynck et al., Mapping cytoskeletal protein function in cells by means of nanobodies, Cytoskeleton, vol.448, issue.1, pp.604-626, 2013.
DOI : 10.1002/cm.21122

A. Rocchetti, C. Hawes, and V. Kriechbaumer, Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody., Plant Methods, pp.10-1186, 2014.

B. Traenkle, F. Emele, R. Anton, O. Poetz, R. S. Haeussler et al., Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells, Molecular & Cellular Proteomics, vol.14, issue.3, pp.707-730, 2015.
DOI : 10.1074/mcp.M114.044016

J. Maier, B. Traenkle, and U. Rothbauer, Real-time analysis of epithelial-mesenchymal transition using fluorescent single-domain antibodies, Scientific Reports, vol.7, issue.1
DOI : 10.1371/journal.pone.0033183

P. Lafaye, I. Achour, P. England, C. Duyckaerts, and F. Rougeon, Single-domain antibodies recognize selectively small oligomeric forms of amyloid ??, prevent A??-induced neurotoxicity and inhibit fibril formation, Molecular Immunology, vol.46, issue.4, pp.695-704, 2009.
DOI : 10.1016/j.molimm.2008.09.008

L. Ozmen, A. Albientz, C. Czech, and H. Jacobsen, Expression of Transgenic APP mRNA Is the Key Determinant for Beta-Amyloid Deposition in PS2APP Transgenic Mice, Neurodegenerative Diseases, vol.6, issue.1-2, pp.29-36, 2009.
DOI : 10.1159/000170884

C. Weidensteiner, F. Metzger, A. Bruns, B. Bohrmann, B. Kuennecke et al., Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer's disease: Comprehensive phenotyping of vascular and tissular parameters by MRI, Magnetic Resonance in Medicine, vol.55, issue.1
DOI : 10.1002/mrm.21985

K. Santacruz, J. Lewis, T. Spires, J. Paulson, L. Kotilinek et al., Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function, Science, vol.309, issue.5733, pp.309-476, 2005.
DOI : 10.1126/science.1113694

P. Agarwal and C. R. Bertozzi, Site-Specific Antibody???Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development, Bioconjugate Chemistry, vol.26, issue.2, pp.176-92, 2015.
DOI : 10.1021/bc5004982

I. Alafuzoff, D. R. Thal, T. Arzberger, N. Bogdanovic, S. Al-sarraj et al., Assessment of ??-amyloid deposits in human brain: a study of the BrainNet Europe Consortium, Acta Neuropathologica, vol.30, issue.3, pp.309-329, 2009.
DOI : 10.1007/s00401-009-0485-4

R. J. Nabuurs, K. S. Rutgers, M. M. Welling, A. Metaxas, M. E. De-backer et al., In Vivo Detection of Amyloid-?? Deposits Using Heavy Chain Antibody Fragments in a Transgenic Mouse Model for Alzheimer's Disease, PLoS ONE, vol.25, issue.6
DOI : 10.1371/journal.pone.0038284.t005

M. Mercken, M. Vandermeeren, U. Lübke, J. Six, J. Boons et al., Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes, Acta Neuropathologica, vol.84, issue.3, pp.265-721384266, 1992.
DOI : 10.1007/BF00227819

A. Muruganandam, J. Tanha, S. Narang, and D. Stanimirovic, Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium, The FASEB Journal, vol.16, pp.240-242, 2002.
DOI : 10.1096/fj.01-0343fje

K. S. Rutgers, A. Van-remoortere, M. Van-buchem, C. T. Verrips, S. M. Greenberg et al., Differential recognition of vascular and parenchymal beta amyloid deposition, Neurobiology of Aging, vol.32, issue.10, pp.1774-83, 2011.
DOI : 10.1016/j.neurobiolaging.2009.11.012

M. Rotman, M. M. Welling, A. Bunschoten, M. E. De-backer, J. Rip et al., Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease, Journal of Controlled Release, vol.203, pp.40-50, 2015.
DOI : 10.1016/j.jconrel.2015.02.012

F. Marques, J. C. Sousa, N. Sousa, and J. A. Palha, Blood???brain-barriers in aging and in Alzheimer???s disease, Molecular Neurodegeneration, vol.8, issue.1, pp.1750-1326, 2013.
DOI : 10.1186/1750-1326-8-38

N. Bien-ly, C. A. Boswell, S. Jeet, T. G. Beach, K. Hoyte et al., Lack of Widespread BBB Disruption in Alzheimer???s Disease Models: Focus on Therapeutic Antibodies, Neuron, vol.88, issue.2, pp.289-97, 2015.
DOI : 10.1016/j.neuron.2015.09.036

L. J. Blair, H. D. Frauen, B. Zhang, B. Nordhues, S. Bijan et al., Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy, Acta Neuropathologica Communications, vol.9, issue.4, 2015.
DOI : 10.1186/s40478-015-0186-2

N. J. Abbott, Blood???brain barrier structure and function and the challenges for CNS drug delivery, Journal of Inherited Metabolic Disease, vol.16, issue.3, pp.437-486, 2013.
DOI : 10.1007/s10545-013-9608-0

A. Abulrob, H. Sprong, P. Van-bergen-en-henegouwen, and D. Stanimirovic, The bloodbrain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells, J. Neurochem, vol.95, 2005.

U. Bickel, T. Yoshikawa, and W. M. Pardridge, Delivery of peptides and proteins through the blood???brain barrier, Advanced Drug Delivery Reviews, vol.46, issue.1-3, pp.247-79, 2001.
DOI : 10.1016/S0169-409X(00)00139-3

J. J. Cronican, D. B. Thompson, K. T. Beier, B. R. Mcnaughton, C. L. Cepko et al., Using a Supercharged Protein, ACS Chemical Biology, vol.5, issue.8, pp.747-5210, 1021.
DOI : 10.1021/cb1001153

J. J. Cronican, K. T. Beier, T. N. Davis, J. Tseng, W. Li et al., A Class of Human Proteins that Deliver Functional Proteins into Mammalian Cells In??Vitro and In??Vivo, Chemistry & Biology, vol.18, issue.7, pp.833-841, 2011.
DOI : 10.1016/j.chembiol.2011.07.003

C. M. Clark, J. Schneider, B. J. Bedell, T. G. Beach, W. B. Bilker et al., Use of florbetapir-PET for imaging beta-amyloid pathology, pp.305-275, 2008.

Y. Kimura, M. Ichise, H. Ito, H. Shimada, Y. Ikoma et al., PET Quantification of Tau Pathology in Human Brain with 11C-PBB3, Journal of Nuclear Medicine, vol.56, issue.9, pp.1359-65, 2015.
DOI : 10.2967/jnumed.115.160127

W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist et al., Imaging brain amyloid in Alzheimer's disease with, Pittsburgh Compound-B. Ann. Neurol, pp.55-306, 2004.

I. Jang, H. Aoki, M. Ito, and . Higuchi, Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls

N. Okamura, S. Furumoto, M. T. Fodero-tavoletti, R. S. Mulligan, R. Harada et al., Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET, Brain, vol.137, issue.6, pp.1762-71, 2014.
DOI : 10.1093/brain/awu064

M. Brendel, A. Jaworska, F. Probst, F. Overhoff, V. Korzhova et al., Rominger, microPET Imaging of Tau Pathology with [18F]-THK5117 in two Transgenic Mouse Models, J. Nucl. Med, vol.49, pp.1-32, 2016.

D. Sehlin, X. T. Fang, L. Cato, G. Antoni, L. Lannfelt et al., Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer???s disease, Nature Communications, vol.135
DOI : 10.1038/ncomms10759

I. Achour, P. Cavelier, M. Tichit, C. Bouchier, P. Lafaye et al., Tetrameric and Homodimeric Camelid IgGs Originate from the Same IgH Locus, The Journal of Immunology, vol.181, issue.3, pp.2001-2010, 2008.
DOI : 10.4049/jimmunol.181.3.2001

URL : https://hal.archives-ouvertes.fr/pasteur-00429626

T. N. Baral, S. Magez, B. Stijlemans, K. Conrath, B. Vanhollebeke et al., Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor, Nature Medicine, vol.350, issue.5, pp.580-584, 1395.
DOI : 10.1038/nm1395

K. Coppieters, T. Dreier, K. Silence, H. De-haard, M. Lauwereys et al., Formatted anti???tumor necrosis factor ?? VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis, Arthritis & Rheumatism, vol.98, issue.6, pp.1856-66, 2006.
DOI : 10.1002/art.21827

V. Cortez-retamozo, N. Backmann, P. D. Senter, U. Wernery, P. De-baetselier et al., Efficient Cancer Therapy with a Nanobody-Based Conjugate, Cancer Research, vol.64, issue.8, pp.2853-715087403, 2004.
DOI : 10.1158/0008-5472.CAN-03-3935

C. Vincke, R. Loris, D. Saerens, S. Martinez-rodriguez, S. Muyldermans et al., General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold, Journal of Biological Chemistry, vol.284, issue.5, pp.3273-84, 2009.
DOI : 10.1074/jbc.M806889200

J. D. Unciti-broceta, T. D. Castillo, M. Soriano, S. Magez, and J. Garcia-salcedo, Novel therapy based on camelid nanobodies, Therapeutic Delivery, vol.4, issue.10, pp.1321-1357, 2013.
DOI : 10.4155/tde.13.87