K. Kashefi and D. R. Lovley, Extending the Upper Temperature Limit for Life, Science, vol.301, issue.5635, p.934, 2003.
DOI : 10.1126/science.1086823

C. Schleper, G. Puehler, I. Holz, A. Gambacorta, D. Janekovic et al., Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0., Journal of Bacteriology, vol.177, issue.24, pp.7050-7059, 1995.
DOI : 10.1128/jb.177.24.7050-7059.1995

J. Eichler, A. , and M. W. , Posttranslational Protein Modification in Archaea, Microbiology and Molecular Biology Reviews, vol.69, issue.3, pp.393-425, 2005.
DOI : 10.1128/MMBR.69.3.393-425.2005

J. Eichler and J. Maupin-furlow, and other haloarchaea, FEMS Microbiology Reviews, vol.37, issue.4, pp.583-606, 2013.
DOI : 10.1111/1574-6976.12012

K. F. Jarrell, Y. Ding, B. H. Meyer, S. Albers, L. Kaminski et al., N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis, Microbiology and Molecular Biology Reviews, vol.78, issue.2, pp.304-345, 2014.
DOI : 10.1128/MMBR.00052-13

M. Humbard, H. V. Miranda, J. Lim, D. J. Krause, J. R. Pritz et al., Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii, Nature, vol.20, issue.7277, pp.54-60, 2010.
DOI : 10.1038/nature08659

G. Palmieri, M. Balestrieri, J. Peter-katalini?, G. Pohlentz, M. Rossi et al., Glycosylation Profile, Journal of Proteome Research, vol.12, issue.6, pp.2779-2790, 2013.
DOI : 10.1021/pr400123z

S. D. Bell, C. H. Botting, B. N. Wardleworth, S. P. Jackson, and M. F. White, The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its Regulation by Acetylation, Science, vol.296, issue.5565, pp.148-151, 2002.
DOI : 10.1126/science.1070506

B. Maras, S. Valiante, R. Chiaraluce, V. Consalvi, L. Politi et al., The amino acid sequence of glutamate dehydrogenase fromPyrococcus furiosus, a hyperthermophilic archaebacterium, Journal of Protein Chemistry, vol.214, issue.2, pp.253-259, 1994.
DOI : 10.1007/BF01891983

C. H. Botting, P. Talbot, S. Paytubi, M. F. White, F. Febbraio et al., Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes Thermal stability and aggregation of sulfolobus solfataricus beta-glycosidase are dependent upon the N-epsilon-methylation of specific lysyl residues: critical role of in vivo post-translational modifications, Archaea J. Biol. Chem, vol.12, issue.279, pp.10185-94, 2004.

Y. Xia, Y. Niu, J. Cui, Y. Fu, X. Chen et al., The helicase activity of hyperthermophilic archaeal MCM is enhanced at high temperatures by lysine methylation Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus, Front. Microbiol. Nat Struct Mol Biol, vol.6, issue.1, pp.808-819, 1994.

N. L. Kelleher, Top-Down Proteomics Proteoform: a single term describing protein complexity, Anal. Chem. Nat Meth, vol.76, issue.10, pp.196-203, 2004.

J. Gault, C. Malosse, S. Machata, C. Millien, I. Podglajen et al., pilins requires top-down mass spectrometry, PROTEOMICS, vol.18, issue.10, pp.1141-1151, 2014.
DOI : 10.1002/pmic.201300394

J. Gault, M. Ferber, S. Machata, A. Imhaus, C. Malosse et al., <italic>Neisseria meningitidis</italic> Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation Mapping intact protein isoforms in discovery mode using top-down proteomics, PLoS Pathog Nature, vol.11, issue.480, pp.254-258, 2011.

C. Ansong, S. Wu, D. Meng, X. Liu, H. M. Brewer et al., Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions, Proc. Natl. Acad. Sci, pp.10153-10158, 2013.
DOI : 10.1073/pnas.1221210110

S. Wu, J. N. Brown, N. Toli?, D. Meng, X. Liu et al., Quantitative analysis of human salivary gland-derived intact proteome using top-down mass spectrometry, PROTEOMICS, vol.252, issue.Suppl 5, pp.1211-1222, 2014.
DOI : 10.1002/pmic.201300378

I. Ntai, K. Kim, R. T. Fellers, O. S. Skinner, A. D. Smith et al., Applying Label-Free Quantitation to Top Down Proteomics, Analytical Chemistry, vol.86, issue.10, pp.4961-4968, 2014.
DOI : 10.1021/ac500395k

A. Moradian, A. Kalli, M. J. Sweredoski, and S. Hess, The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications, PROTEOMICS, vol.11, issue.4-5, pp.489-497, 2014.
DOI : 10.1002/pmic.201300256

C. Jaubert, C. Danioux, J. Oberto, D. Cortez, A. Bize et al., Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon, Open Biology, vol.41, issue.1, pp.1568-1573, 2008.
DOI : 10.1016/j.coi.2011.10.005

URL : https://hal.archives-ouvertes.fr/hal-00818894

D. Botelho, M. J. Wall, D. B. Vieira, S. Fitzsimmons, F. Liu et al., Top-Down and Bottom-Up Proteomics of SDS-Containing Solutions Following Mass-Based Separation, Journal of Proteome Research, vol.9, issue.6, pp.2863-2870, 2010.
DOI : 10.1021/pr900949p

A. Shevchenko, H. Tomas, J. Havlis, J. V. Olsen, and M. Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nature Protocols, vol.5, issue.6, pp.2856-60, 2006.
DOI : 10.1038/nprot.2006.468

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

A. Goloborodko, L. Levitsky, M. Ivanov, and M. Gorshkov, Pyteomics???a Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics, Journal of The American Society for Mass Spectrometry, vol.35, issue.2, pp.301-304, 2013.
DOI : 10.1007/s13361-012-0516-6

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ, Molecular & Cellular Proteomics, vol.13, issue.9, pp.2513-2526, 2014.
DOI : 10.1074/mcp.M113.031591

A. D. Catherman, K. R. Durbin, D. R. Ahlf, B. P. Early, R. T. Fellers et al., Large-scale Top-down Proteomics of the Human Proteome: Membrane Proteins, Mitochondria, and Senescence, 2013) Large-scale Top-down Proteomics of the Human Proteome: Membrane Proteins, Mitochondria, and Senescence, pp.3465-3473
DOI : 10.1074/mcp.M113.030114

P. R. Baker, C. , and R. J. , MS-Viewer: A Web-based Spectral Viewer for Proteomics Results, Molecular & Cellular Proteomics, vol.13, issue.5, pp.1392-1396, 2014.
DOI : 10.1074/mcp.O113.037200

A. M. Brown, S. L. Hoopes, R. H. White, and S. , Purine biosynthesis in archaea: variations on a theme, Biology Direct, vol.6, issue.1, p.63, 2011.
DOI : 10.1101/gr.849004

S. Schnell and H. M. Steinman, Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus., Journal of Bacteriology, vol.177, issue.20, pp.5924-5929, 1995.
DOI : 10.1128/jb.177.20.5924-5929.1995

S. Nair and S. E. Finkel, Dps Protects Cells against Multiple Stresses during Stationary Phase, Journal of Bacteriology, vol.186, issue.13, pp.4192-4198, 2004.
DOI : 10.1128/JB.186.13.4192-4198.2004

A. Pop?awski and R. Bernander, Nucleoid structure and distribution in thermophilic Archaea., Journal of Bacteriology, vol.179, issue.24, pp.7625-7630, 1997.
DOI : 10.1128/jb.179.24.7625-7630.1997

K. Hjort and R. Bernander, Changes in Cell Size and DNA Content inSulfolobus Cultures during Dilution and Temperature Shift Experiments, J. Bacteriol, vol.181, pp.5669-5675, 1999.

C. Choudhary, B. T. Weinert, Y. Nishida, E. Verdin, and M. Mann, The growing landscape of lysine acetylation links metabolism and cell signalling, Nature Reviews Molecular Cell Biology, vol.13, issue.8, pp.536-550, 2014.
DOI : 10.1038/nrm3841

T. Svinkina, H. Gu, J. C. Silva, P. Mertins, J. Qiao et al., Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow, 2015) Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow, pp.2429-2440
DOI : 10.1074/mcp.O114.047555

K. Zhang, S. Tian, F. , and E. , Protein lysine acetylation analysis: current MS-based proteomic technologies, The Analyst, vol.8, issue.6, pp.1628-1636, 2013.
DOI : 10.1039/c3an36837h

J. Soppa, D. T. Mackay, C. H. Botting, G. L. Taylor, and M. F. White, Protein acetylation in archaea, bacteria, and eukaryotes An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus, Archaea Mol. Microbiol, vol.42, issue.64, pp.1540-1548, 2007.

S. Ammendola, C. A. Raia, C. Caruso, L. Camardella, S. D-'auria et al., Thermostable NAD+-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases, Biochemistry, vol.31, issue.49, pp.12514-12523, 1992.
DOI : 10.1021/bi00164a031

B. Maras, V. Consalvi, R. Chiaraluce, L. Politi, M. De-rosa et al., The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-epsilon-methyllysine related to thermostability?, European Journal of Biochemistry, vol.186, issue.1-2, pp.81-87, 1992.
DOI : 10.1038/333784a0

M. Azkargorta, M. N. Wojtas, N. G. Abrescia, and F. Elortza, Lysine Methylation Mapping of Crenarchaeal DNA-Directed RNA Polymerases by Collision-Induced and Electron-Transfer Dissociation Mass Spectrometry, Journal of Proteome Research, vol.13, issue.5, pp.2637-2648, 2014.
DOI : 10.1021/pr500084p

B. Perazzona and J. L. Spudich, Identification of Methylation Sites and Effects of Phototaxis Stimuli on Transducer Methylation in Halobacterium salinarum, J. Bacteriol, vol.181, pp.5676-5683, 1999.

M. K. Koch, W. F. Staudinger, F. Siedler, and D. Oesterhelt, Physiological Sites of Deamidation and Methyl Esterification in Sensory Transducers of Halobacterium salinarum, Journal of Molecular Biology, vol.380, issue.2, pp.285-302, 2008.
DOI : 10.1016/j.jmb.2008.04.063

A. Schmidt, K. Kochanowski, S. Vedelaar, E. Ahrne, B. Volkmer et al., The quantitative and condition-dependent Escherichia coli proteome, Nature Biotechnology, vol.67, issue.1, pp.104-110, 2016.
DOI : 10.1002/pmic.201000665

K. S. Makarova, A. V. Sorokin, P. S. Novichkov, Y. I. Wolf, and E. Koonin, Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea, Biology Direct, vol.2, issue.1, p.33, 2007.
DOI : 10.1186/1745-6150-2-33

K. Makarova, Y. Wolf, and E. Koonin, Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales, Life, vol.5, issue.1, pp.818-840, 2015.
DOI : 10.3390/life5010818

Y. Niu, Y. Xia, S. Wang, J. Li, C. Niu et al., A Prototypic Lysine Methyltransferase 4 from Archaea with Degenerate Sequence Specificity Methylates Chromatin Proteins Sul7d and Cren7 in Different Patterns, Journal of Biological Chemistry, vol.288, issue.19, pp.13728-13768, 2013.
DOI : 10.1074/jbc.M113.452979

A. J. Forbes, S. M. Patrie, G. K. Taylor, Y. Kim, L. Jiang et al., Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2678-2683, 2004.
DOI : 10.1073/pnas.0306575101

J. Ferguson, C. Wenger, W. Metcalf, and N. Kelleher, Top-down proteomics reveals novel protein forms expressed in methanosarcina acetivorans, Journal of the American Society for Mass Spectrometry, vol.18, issue.9, pp.1743-1750, 2009.
DOI : 10.1016/j.jasms.2009.05.014

N. Fortelny, P. Pavlidis, and C. M. Overall, The path of no return-Truncated protein N-termini and current ignorance of their genesis, PROTEOMICS, vol.11, issue.14, pp.2547-2552, 2015.
DOI : 10.1002/pmic.201500043

M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, Quantitative mass spectrometry in proteomics: a critical review, Analytical and Bioanalytical Chemistry, vol.25, issue.7, pp.1017-1031, 2007.
DOI : 10.1007/s00216-007-1486-6

A. S. Hebert, A. L. Richards, D. J. Bailey, A. Ulbrich, E. E. Coughlin et al., The One Hour Yeast Proteome, Molecular & Cellular Proteomics, vol.13, issue.1, p.59, 2013.
DOI : 10.1074/mcp.M113.034769

C. Jelinska, M. J. Conroy, C. J. Craven, A. M. Hounslow, P. A. Bullough et al., Obligate Heterodimerization of the Archaeal Alba2 Protein with Alba1 Provides a Mechanism for Control of DNA Packaging, Structure, vol.13, issue.7, pp.963-71, 2005.
DOI : 10.1016/j.str.2005.04.016

N. Laurens, R. P. Driessen, I. Heller, D. Vorselen, M. C. Noom et al., Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA, Nature Communications, vol.86, p.1328, 2012.
DOI : 10.1038/ncomms2330

R. P. Driessen and R. T. Dame, Structure and dynamics of the crenarchaeal nucleoid: Figure 1, Biochemical Society Transactions, vol.179, issue.1, pp.321-325, 2013.
DOI : 10.1128/MMBR.69.3.393-425.2005

Y. Chu, Z. Zhang, Q. Wang, Y. Luo, and L. Huang, Identification and Characterization of a Highly Conserved Crenarchaeal Protein Lysine Methyltransferase with Broad Substrate Specificity, Journal of Bacteriology, vol.194, issue.24, pp.6917-6943, 2012.
DOI : 10.1128/JB.01535-12

K. Zhao, X. Chai, and R. Marmorstein, Structure of a Sir2 Substrate, Alba, Reveals a Mechanism for Deacetylation-induced Enhancement of DNA Binding, Journal of Biological Chemistry, vol.278, issue.28, pp.26071-26077, 2003.
DOI : 10.1074/jbc.M303666200

K. Sandman and J. N. And-reeve, Archaeal chromatin proteins: different structures but common function?, Current Opinion in Microbiology, vol.8, issue.6, pp.656-61, 2005.
DOI : 10.1016/j.mib.2005.10.007

E. Peeters, R. P. Driessen, F. Werner, and R. T. Dame, The interplay between nucleoid organization and transcription in archaeal genomes, Nature Reviews Microbiology, vol.215, issue.6, pp.333-341, 2015.
DOI : 10.1038/nrmicro3467

Y. Chang and C. Hsu, Structural Basis for Substrate-specific Acetylation of N?acetyltransferase Ard1 from Sulfolobus solfataricus, Sci. Rep, vol.5, 2015.