Skip to Main content Skip to Navigation
Journal articles

A Single Amino Acid Substitution Changes the Self-Assembly Status of a Type IV Piliation Secretin

Abstract : Secretins form large multimeric complexes in the outer membranes of many Gram-negative bacteria, where they function as dedicated gateways that allow proteins to access the extracellular environment. Despite their overall relatedness, different secre-tins use different specific and general mechanisms for their targeting, assembly, and membrane insertion. We report that all tested secretins from several type II secretion systems and from the filamentous bacteriophage f1 can spontaneously multimerize and insert into liposomes in an in vitro transcription-translation system. Phylogenetic analyses indicate that these secretins form a group distinct from the secretins of the type IV piliation and type III secretion systems, which do not autoassemble in vitro. A mutation causing a proline-to-leucine substitution allowed PilQ secretins from two different type IV piliation systems to assemble in vitro, albeit with very low efficiency, suggesting that autoassembly is an inherent property of all secretins.
Complete list of metadatas

Cited literature [45 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-01374952
Contributor : Rocha Eduardo <>
Submitted on : Sunday, October 2, 2016 - 6:34:31 PM
Last modification on : Wednesday, September 23, 2020 - 9:54:17 AM
Long-term archiving on: : Tuesday, January 3, 2017 - 1:33:44 PM

File

zjb4951.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

N. N. Nickerson, S. S. Abby, E. P. C. Rocha, M. Chami, A. P. Pugsley. A Single Amino Acid Substitution Changes the Self-Assembly Status of a Type IV Piliation Secretin. Journal of Bacteriology, American Society for Microbiology, 2012, 194 (18), pp.4951 - 4958. ⟨10.1128/JB.00798-12⟩. ⟨pasteur-01374952⟩

Share

Metrics

Record views

167

Files downloads

403