P. L. Deininger, J. V. Moran, M. A. Batzer, H. H. Kazazian, and . Jr, Mobile elements and mammalian genome evolution, Current Opinion in Genetics & Development, vol.13, issue.6, pp.651-658, 2003.
DOI : 10.1016/j.gde.2003.10.013

N. Bannert and R. Kurth, Retroelements and the human genome: New perspectives on an old relation, Proc. Natl Acad. Sci. USA, pp.14572-14579, 2004.
DOI : 10.1073/pnas.0404838101

H. H. Kazazian and . Jr, Mobile Elements: Drivers of Genome Evolution, Science, vol.303, issue.5664, pp.1626-1632, 2004.
DOI : 10.1126/science.1089670

R. Löwer, The pathogenic potential of endogenous retroviruses: facts and fantasies, Trends in Microbiology, vol.7, issue.9, pp.350-356, 1999.
DOI : 10.1016/S0966-842X(99)01565-6

M. Dewannieux and T. Heidmann, LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling, Cytogenetic and Genome Research, vol.110, issue.1-4, 2005.
DOI : 10.1159/000084936

N. De-parseval and T. Heidmann, Human endogenous retroviruses: from infectious elements to human genes, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.318-332, 2005.
DOI : 10.1159/000084964

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.6, issue.6822, pp.860-921, 2001.
DOI : 10.1038/35057062

R. H. Waterston, K. Lindblad-toh, E. Birney, J. Rogers, J. F. Abril et al., Initial sequencing and comparative analysis of the mouse genome, Nature, vol.420, pp.520-562, 2002.

M. Dewannieux, A. Dupressoir, F. Harper, G. Pierron, and T. Heidmann, Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells, Nature Genetics, vol.36, issue.5, pp.534-539, 2004.
DOI : 10.1038/ng1353

D. Ribet, M. Dewannieux, and T. Heidmann, An active murine transposon family pair: Retrotransposition of "master" MusD copies and ETn trans-mobilization, Genome Research, vol.14, issue.11, pp.2261-2267, 2004.
DOI : 10.1101/gr.2924904

A. F. Burden, N. C. Manley, A. D. Clark, S. M. Gartler, C. D. Laird et al., Hemimethylation and non-CpG methylation levels in a promoter region of human, 2005.

D. Bourc-'his and T. H. Bestor, Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L, Nature, vol.18, p.18, 2004.

L. Lavie, M. Kitova, E. Maldener, E. Meese, and J. Mayer, CpG Methylation Directly Regulates Transcriptional Activity of the Human Endogenous Retrovirus Family HERV-K(HML-2), Journal of Virology, vol.79, issue.2, pp.876-883, 2005.
DOI : 10.1128/JVI.79.2.876-883.2005

T. H. Li, C. Kim, C. M. Rubin, and C. W. Schmid, K562 cells implicate increased chromatin accessibility in Alu transcriptional activation, Nucleic Acids Research, vol.28, issue.16, pp.3031-3039, 2000.
DOI : 10.1093/nar/28.16.3031

A. I. Kalmykova, M. S. Klenov, and V. A. Gvozdev, Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline, Nucleic Acids Research, vol.33, issue.6, pp.2052-2059, 2005.
DOI : 10.1093/nar/gki323

H. S. Soifer, A. Zaragoza, M. Peyvan, M. A. Behlke, and J. J. Rossi, A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon, Nucleic Acids Research, vol.33, issue.3, pp.846-856, 2005.
DOI : 10.1093/nar/gki223

R. F. Ketting and R. H. Plasterk, A genetic link between co-suppression and RNA interference in C.elegans, Nature, vol.404, pp.296-298, 2000.

H. Tabara, M. Sarkissian, W. G. Kelly, J. Fleenor, A. Grishok et al., The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans, Cell, vol.99, issue.2, pp.123-132, 1999.
DOI : 10.1016/S0092-8674(00)81644-X

S. Jensen, M. Gassama, and T. Heidmann, Taming of transposable elements by homology-dependent gene silencing, Nature Genet, vol.21, pp.209-212, 1999.

S. Jensen, M. Gassama, and T. Heidmann, Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes, Genetics, vol.153, pp.1767-1774, 1999.

C. Esnault, O. Heidmann, F. Delebecque, M. Dewannieux, D. Ribet et al., APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses, Nature, vol.16, issue.7024, pp.430-433, 2005.
DOI : 10.1093/nar/30.11.e49

URL : https://hal.archives-ouvertes.fr/pasteur-01372656

J. A. Dutko, A. Schafer, A. E. Kenny, B. R. Cullen, and M. J. Curcio, Inhibition of a Yeast LTR Retrotransposon by Human APOBEC3 Cytidine Deaminases, Current Biology, vol.15, issue.7, pp.661-666, 2005.
DOI : 10.1016/j.cub.2005.02.051

A. J. Schumacher, D. V. Nissley, and R. S. Harris, APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast, Proc. Natl Acad. Sci. USA, 6, 2005.
DOI : 10.1073/pnas.0501694102

A. Jarmuz, A. Chester, J. Bayliss, J. Gisbourne, I. Dunham et al., An Anthropoid-Specific Locus of Orphan C to U RNA-Editing Enzymes on Chromosome 22, Genomics, vol.79, issue.3, pp.285-296, 2002.
DOI : 10.1006/geno.2002.6718

J. E. Wedekind, G. S. Dance, M. P. Sowden, and H. C. Smith, Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business, Trends in Genetics, vol.19, issue.4, pp.207-216, 2003.
DOI : 10.1016/S0168-9525(03)00054-4

I. B. Rogozin, M. K. Basu, I. K. Jordan, Y. I. Pavlov, and E. V. Koonin, APOBEC4, a New Member of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases Predicted by Computational Analysis, Cell Cycle, vol.4, issue.9, p.9, 2005.
DOI : 10.4161/cc.4.9.1994

R. C. Beale, S. K. Petersen-mahrt, I. N. Watt, R. S. Harris, C. Rada et al., Comparison of the Differential Context-dependence of DNA Deamination by APOBEC Enzymes: Correlation with Mutation Spectra in Vivo, Journal of Molecular Biology, vol.337, issue.3, pp.585-596, 2004.
DOI : 10.1016/j.jmb.2004.01.046

R. S. Harris and M. T. Liddament, Retroviral restriction by APOBEC proteins, Nature Reviews Immunology, vol.92, issue.11, pp.868-877, 2004.
DOI : 10.1046/j.1523-1747.1999.00682.x

P. Turelli and D. Trono, Editing at the Crossroad of Innate and Adaptive Immunity, Science, vol.307, issue.5712, pp.1061-1065, 2005.
DOI : 10.1126/science.1105964

B. R. Cullen, Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors, Journal of Virology, vol.80, issue.3, pp.1067-1076, 2006.
DOI : 10.1128/JVI.80.3.1067-1076.2006

L. M. Powell, S. C. Wallis, R. J. Pease, Y. H. Edwards, T. J. Knott et al., A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine, Cell, vol.50, issue.6, pp.831-840, 1987.
DOI : 10.1016/0092-8674(87)90510-1

N. Navaratnam, J. R. Morrison, S. Bhattacharya, D. Patel, T. Funahashi et al., The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase, J. Biol. Chem, vol.268, pp.20709-20712, 1993.

B. Teng, C. F. Burant, and N. O. Davidson, Molecular cloning of an apolipoprotein B messenger RNA editing protein, Science, vol.260, issue.5115, pp.1816-1819, 1993.
DOI : 10.1126/science.8511591

T. Honjo, H. Nagaoka, R. Shinkura, and M. Muramatsu, AID to overcome the limitations of genomic information, Nature Immunology, vol.171, issue.7, pp.655-661, 2005.
DOI : 10.1073/pnas.0303971101

S. G. Conticello, C. J. Thomas, S. K. Petersen-mahrt, and M. S. Neuberger, Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases, Molecular Biology and Evolution, vol.22, issue.2, pp.367-377, 2005.
DOI : 10.1093/molbev/msi026

A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, vol.71, issue.6898, pp.646-650, 2002.
DOI : 10.1093/emboj/16.15.4531

B. Mangeat, P. Turelli, G. Caron, M. Friedli, L. Perrin et al., Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, vol.424, issue.6944, pp.99-103, 2003.
DOI : 10.1038/nature01709

D. Lecossier, F. Bouchonnet, F. Clavel, and A. J. Hance, Hypermutation of HIV-1 DNA in the Absence of the Vif Protein, Science, vol.300, issue.5622, p.1112, 2003.
DOI : 10.1126/science.1083338

H. Zhang, B. Yang, R. J. Pomerantz, C. Zhang, S. C. Arunachalam et al., The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature, vol.424, issue.6944, pp.94-98, 2003.
DOI : 10.1038/nature01707

K. N. Bishop, R. K. Holmes, A. M. Sheehy, N. O. Davidson, S. J. Cho et al., Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins, Current Biology, vol.14, issue.15, pp.1392-1396, 2004.
DOI : 10.1016/j.cub.2004.06.057

K. N. Bishop, R. K. Holmes, A. M. Sheehy, and M. H. Malim, APOBEC-Mediated Editing of Viral RNA, Science, vol.305, issue.5684, p.645, 2004.
DOI : 10.1126/science.1100658

M. T. Liddament, W. L. Brown, A. J. Schumacher, and R. S. Harris, APOBEC3F Properties and Hypermutation Preferences Indicate Activity against HIV-1 In Vivo, Current Biology, vol.14, issue.15, pp.1385-1391, 2004.
DOI : 10.1016/j.cub.2004.06.050

H. L. Wiegand, B. P. Doehle, H. P. Bogerd, and B. R. Cullen, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, The EMBO Journal, vol.67, issue.12, pp.2451-2458, 2004.
DOI : 10.1038/nature01707

Y. H. Zheng, D. Irwin, T. Kurosu, K. Tokunaga, T. Sata et al., Human APOBEC3F Is Another Host Factor That Blocks Human Immunodeficiency Virus Type 1 Replication, Journal of Virology, vol.78, issue.11, 2004.
DOI : 10.1128/JVI.78.11.6073-6076.2004

R. S. Harris, K. N. Bishop, A. M. Sheehy, H. M. Craig, S. K. Petersen-mahrt et al., DNA Deamination Mediates Innate Immunity to Retroviral Infection, Cell, vol.113, issue.6, pp.803-809, 2003.
DOI : 10.1016/S0092-8674(03)00423-9

R. S. Harris, A. M. Sheehy, H. M. Craig, M. H. Malim, and M. S. Neuberger, DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses, Nature Immunology, vol.4, issue.7, pp.641-643, 2003.
DOI : 10.1038/ni0703-641

B. Mangeat, P. Turelli, S. Liao, and D. Trono, A Single Amino Acid Determinant Governs the Species-specific Sensitivity of APOBEC3G to Vif Action, Journal of Biological Chemistry, vol.279, issue.15, pp.14481-14483, 2004.
DOI : 10.1074/jbc.C400060200

S. P. Goff, Death by Deamination, Cell, vol.114, issue.3, pp.281-283, 2003.
DOI : 10.1016/S0092-8674(03)00602-0

S. G. Conticello, R. S. Harris, and M. S. Neuberger, The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G, Current Biology, vol.13, issue.22, 2003.
DOI : 10.1016/j.cub.2003.10.034

S. Kao, M. A. Khan, E. Miyagi, R. Plishka, A. Buckler-white et al., The Human Immunodeficiency Virus Type 1 Vif Protein Reduces Intracellular Expression and Inhibits Packaging of APOBEC3G (CEM15), a Cellular Inhibitor of Virus Infectivity, Journal of Virology, vol.77, issue.21, pp.11398-11407, 2003.
DOI : 10.1128/JVI.77.21.11398-11407.2003

B. Liu, X. Yu, K. Luo, Y. Yu, and X. F. Yu, Influence of Primate Lentiviral Vif and Proteasome Inhibitors on Human Immunodeficiency Virus Type 1 Virion Packaging of APOBEC3G, Journal of Virology, vol.78, issue.4, 2004.
DOI : 10.1128/JVI.78.4.2072-2081.2004

M. Marin, K. M. Rose, S. L. Kozak, and D. Kabat, HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nature Medicine, vol.9, issue.11, pp.1398-1403, 2003.
DOI : 10.1038/nm946

A. Mehle, B. Strack, P. Ancuta, C. Zhang, M. Mcpike et al., Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway, Journal of Biological Chemistry, vol.279, issue.9, pp.7792-7798, 2004.
DOI : 10.1074/jbc.M313093200

A. Mehle, J. Goncalves, M. Santa-marta, M. Mcpike, and D. Gabuzda, Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation, Genes & Development, vol.18, issue.23, pp.2861-2866, 2004.
DOI : 10.1101/gad.1249904

A. M. Sheehy, N. C. Gaddis, and M. H. Malim, The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif, Nature Medicine, vol.9, issue.11, pp.1404-1407, 2003.
DOI : 10.1038/nm945

R. Mariani, D. Chen, B. Schrofelbauer, F. Navarro, R. Konig et al., Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif, Cell, vol.114, issue.1, pp.21-31, 2003.
DOI : 10.1016/S0092-8674(03)00515-4

O. Heidmann and T. Heidmann, Retrotransposition of a mouse IAP sequence tagged with an indicator gene, Cell, vol.64, issue.1, pp.159-170, 1991.
DOI : 10.1016/0092-8674(91)90217-M

J. V. Moran, S. E. Holmes, T. P. Nass, R. J. Deberardinis, J. D. Boeke et al., High Frequency Retrotransposition in Cultured Mammalian Cells, Cell, vol.87, issue.5, pp.917-927, 1996.
DOI : 10.1016/S0092-8674(00)81998-4

C. Esnault, J. F. Casella, and T. Heidmann, A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells, Nucleic Acids Research, vol.30, issue.11, p.49, 2002.
DOI : 10.1093/nar/30.11.e49

P. Turelli, S. Vianin, and D. Trono, The Innate Antiretroviral Factor APOBEC3G Does Not Affect Human LINE-1 Retrotransposition in a Cell Culture Assay, Journal of Biological Chemistry, vol.279, issue.42, pp.43371-43373, 2004.
DOI : 10.1074/jbc.C400334200

M. Kobayashi, A. Takaori-kondo, K. Shindo, A. Abudu, K. Fukunaga et al., APOBEC3G Targets Specific Virus Species, Journal of Virology, vol.78, issue.15, pp.8238-8244, 2004.
DOI : 10.1128/JVI.78.15.8238-8244.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC446120

Q. Yu, D. Chen, R. Konig, R. Mariani, D. Unutmaz et al., APOBEC3B and APOBEC3C Are Potent Inhibitors of Simian Immunodeficiency Virus Replication, Journal of Biological Chemistry, vol.279, issue.51, pp.53379-53386, 2004.
DOI : 10.1074/jbc.M408802200

Q. Yu, R. Konig, S. Pillai, K. Chiles, M. Kearney et al., Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome, Nature Structural & Molecular Biology, vol.67, issue.5, pp.435-442, 2004.
DOI : 10.1074/jbc.C300114200

H. E. Krokan, F. Drablos, and G. Slupphaug, Uracil in DNA ??? occurrence, consequences and repair, Oncogene, vol.21, issue.58, pp.8935-8948, 2002.
DOI : 10.1038/sj.onc.1205996

E. N. Newman, R. K. Holmes, H. M. Craig, K. C. Klein, J. R. Lingappa et al., Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity, Current Biology, vol.15, issue.2, pp.166-170, 2005.
DOI : 10.1016/j.cub.2004.12.068

C. Rada, J. M. Jarvis, and C. Milstein, AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization, Proc. Natl Acad. Sci. USA, pp.7003-7008, 2002.
DOI : 10.1073/pnas.092160999

S. Ito, H. Nagaoka, R. Shinkura, N. Begum, M. Muramatsu et al., Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc. Natl Acad. Sci. USA, 1975.
DOI : 10.1073/pnas.0307335101

S. S. Brar, M. Watson, and M. Diaz, Activation-induced Cytosine Deaminase (AID) Is Actively Exported out of the Nucleus but Retained by the Induction of DNA Breaks, Journal of Biological Chemistry, vol.279, issue.25, pp.26395-26401, 2004.
DOI : 10.1074/jbc.M403503200