L. Stamatatos, L. Morris, D. R. Burton, and J. Mascola, Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?, Nature Medicine, vol.453, pp.866-870, 2009.
DOI : 10.1038/nm.1949

L. Mccoy and R. Weiss, Neutralizing antibodies to HIV-1 induced by immunization, The Journal of Experimental Medicine, vol.72, issue.2, pp.209-223, 2013.
DOI : 10.1086/314452

H. Mouquet, Antibody B cell responses in HIV-1 infection, Trends in Immunology, vol.35, issue.11, pp.549-561, 2014.
DOI : 10.1016/j.it.2014.08.007

F. Klein, Antibodies in HIV-1 Vaccine Development and Therapy, Science, vol.341, issue.6151, pp.1199-1204, 2013.
DOI : 10.1126/science.1241144

URL : https://hal.archives-ouvertes.fr/pasteur-00861957

D. R. Burton and J. R. Mascola, Antibody responses to envelope glycoproteins in HIV-1 infection, Nature Immunology, vol.15, issue.6, pp.571-576, 2015.
DOI : 10.1073/pnas.1217207109

M. Caskey, Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117, Nature, vol.14, issue.7557, pp.487-491, 2015.
DOI : 10.1038/nature14411

M. Malbec, Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission, The Journal of Experimental Medicine, vol.67, issue.13, pp.2813-2821, 2013.
DOI : 10.1126/science.1207532

URL : https://hal.archives-ouvertes.fr/pasteur-01108608

L. Reh, Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent, PLOS Pathogens, vol.82, issue.7, p.1004966, 2015.
DOI : 10.1371/journal.ppat.1004966.s013

A. J. Hessell, Fc receptor but not complement binding is important in antibody protection against HIV, Nature, vol.75, issue.7158, pp.101-104, 2007.
DOI : 10.1038/nature06106

S. Bournazos, Broadly Neutralizing Anti-HIV-1 Antibodies Require Fc Effector Functions for In??Vivo Activity, Cell, vol.158, issue.6, pp.1243-1253, 2014.
DOI : 10.1016/j.cell.2014.08.023

S. Y. Ko, Enhanced neonatal Fc receptor function improves protection against primate SHIV infection, Nature, vol.39, issue.7524, pp.642-645, 2014.
DOI : 10.1038/nature13612

M. Kramski, I. Stratov, and S. J. Kent, The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein, AIDS, vol.29, issue.2, pp.137-144, 2015.
DOI : 10.1097/QAD.0000000000000523

Z. Euler and G. Alter, Exploring the Potential of Monoclonal Antibody Therapeutics for HIV-1 Eradication, AIDS Research and Human Retroviruses, vol.31, issue.1, pp.13-24, 2015.
DOI : 10.1089/aid.2014.0235

W. Lee, M. Parsons, S. Kent, and M. Lichtfuss, Can HIV-1-specific ADCC assist the clearance of reactivated latently infected cells? Front, Immunol, vol.6, p.265, 2015.

B. F. Haynes, Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial, New England Journal of Medicine, vol.366, issue.14, pp.1275-1286, 2012.
DOI : 10.1056/NEJMoa1113425

A. W. Chung, Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology, Cell, vol.163, issue.4, pp.988-998, 2015.
DOI : 10.1016/j.cell.2015.10.027

D. H. Barouch, Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys, Science, vol.349, issue.6245, pp.320-324, 2015.
DOI : 10.1126/science.aab3886

O. Lambotte, Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers, AIDS, vol.23, issue.8, pp.897-906, 2009.
DOI : 10.1097/QAD.0b013e328329f97d

URL : https://hal.archives-ouvertes.fr/inserm-00387059

A. Smalls-mantey, T Cells Is Directly Associated with the Magnitude of Surface IgG Binding, Journal of Virology, vol.86, issue.16, pp.8672-8680, 2012.
DOI : 10.1128/JVI.00287-12

C. Milligan, B. A. Richardson, G. John-stewart, R. Nduati, and J. Overbaugh, Passively Acquired Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity in HIV-Infected Infants Is Associated with Reduced Mortality, Cell Host & Microbe, vol.17, issue.4, pp.500-506, 2015.
DOI : 10.1016/j.chom.2015.03.002

A. W. Chung, Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure, Proc. Natl Acad. Sci. USA, pp.7505-7510, 2011.
DOI : 10.1073/pnas.1016048108

J. Richard, CD4 mimetics sensitize HIV-1-infected cells to ADCC, Proc. Natl Acad. Sci. USA, pp.2687-2694, 2015.
DOI : 10.1073/pnas.1506755112

R. A. Alvarez, HIV-1 Vpu Antagonism of Tetherin Inhibits Antibody-Dependent Cellular Cytotoxic Responses by Natural Killer Cells, Journal of Virology, vol.88, issue.11, pp.6031-6046, 2014.
DOI : 10.1128/JVI.00449-14

J. F. Arias, Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity, Proc. Natl Acad. Sci. USA 111, pp.6425-6430, 2014.
DOI : 10.1073/pnas.1321507111

T. N. Pham, S. Lukhele, F. Hajjar, J. P. Routy, and E. ´. Cohen, HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2, Retrovirology, vol.11, issue.1, p.15, 2014.
DOI : 10.1073/pnas.1101684108

S. G. Deeks, Towards an HIV cure: a global scientific strategy, Nature Reviews Immunology, vol.2, issue.8, pp.607-614, 2012.
DOI : 10.1038/nri3262

A. Halper-stromberg, Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice, Cell, vol.158, issue.5, pp.989-999, 2014.
DOI : 10.1016/j.cell.2014.07.043

R. W. Sanders, HIV-1 neutralizing antibodies induced by native-like envelope trimers, Science, vol.349, issue.6244, p.4223, 2015.
DOI : 10.1126/science.aac4223

H. Mouquet, Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies, Proc. Natl Acad. Sci. USA, pp.3268-3277, 2012.
DOI : 10.1073/pnas.1217207109

H. Mouquet, Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses, PLoS ONE, vol.201, issue.9, p.24078, 2011.
DOI : 10.1371/journal.pone.0024078.s007

W. Lee, ABSTRACT, Journal of Virology, vol.90, issue.4, pp.2021-2030, 2015.
DOI : 10.1128/JVI.02717-15

J. Salazar-gonzalez, Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection, The Journal of Experimental Medicine, vol.79, issue.6, pp.1273-1289, 2009.
DOI : 10.1128/JVI.79.16.10108-10125.2005

M. S. Seaman, Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies, Journal of Virology, vol.84, issue.3, pp.1439-1452, 2010.
DOI : 10.1128/JVI.02108-09

R. Kong, ABSTRACT, Journal of Virology, vol.89, issue.5, pp.2659-2671, 2015.
DOI : 10.1128/JVI.03136-14

K. M. Bruner, N. N. Hosmane, and R. F. Siliciano, Towards an HIV-1 cure: measuring the latent reservoir, Trends in Microbiology, vol.23, issue.4, pp.192-203, 2015.
DOI : 10.1016/j.tim.2015.01.013

J. F. Scheid, Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding, Science, vol.333, issue.6049, pp.1633-1637, 2011.
DOI : 10.1126/science.1207227

T. W. Chun, Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir, Proc. Natl Acad. Sci. USA 111, pp.13151-13156, 2014.
DOI : 10.1073/pnas.1414148111

F. Maldarelli, Specific HIV integration sites are linked to clonal expansion and persistence of infected cells, Science, vol.345, issue.6193, pp.179-183, 2014.
DOI : 10.1126/science.1254194

L. B. Cohn, HIV-1 Integration Landscape during Latent and Active Infection, Cell, vol.160, issue.3, pp.420-432, 2015.
DOI : 10.1016/j.cell.2015.01.020

N. H. Tobin, Evidence that Low-Level Viremias during Effective Highly Active Antiretroviral Therapy Result from Two Processes: Expression of Archival Virus and Replication of Virus, Journal of Virology, vol.79, issue.15, pp.9625-9634, 2005.
DOI : 10.1128/JVI.79.15.9625-9634.2005

N. Chomont, HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nature Medicine, vol.45, issue.8, pp.893-900, 2009.
DOI : 10.1038/nm.1972

D. S. Ruelas and W. C. Greene, An Integrated Overview of HIV-1 Latency, Cell, vol.155, issue.3, pp.519-529, 2013.
DOI : 10.1016/j.cell.2013.09.044

L. Shan, Stimulation of HIV-1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral Reservoir after Virus Reactivation, Immunity, vol.36, issue.3, pp.491-501, 2012.
DOI : 10.1016/j.immuni.2012.01.014

A. Pegu, Activation and lysis of human CD4 cells latently infected with HIV-1, Nature Communications, vol.65, p.8447, 2015.
DOI : 10.1126/scitranslmed.3008992

N. Casartelli, Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission, PLoS Pathogens, vol.26, issue.6, p.1000955, 2010.
DOI : 10.1371/journal.ppat.1000955.s011

URL : https://hal.archives-ouvertes.fr/pasteur-00498504

C. Ochsenbauer, Generation of Transmitted/Founder HIV-1 Infectious Molecular Clones and Characterization of Their Replication Capacity in CD4 T Lymphocytes and Monocyte-Derived Macrophages, Journal of Virology, vol.86, issue.5, pp.2715-2728, 2012.
DOI : 10.1128/JVI.06157-11