K. Vickerman, DEVELOPMENTAL CYCLES AND BIOLOGY OF PATHOGENIC TRYPANOSOMES, British Medical Bulletin, vol.41, issue.2, pp.105-114, 1985.
DOI : 10.1093/oxfordjournals.bmb.a072036

T. Hammarton, J. Clark, F. Douglas, M. Boshart, and J. Mottram, Stage-specific Differences in Cell Cycle Control in Trypanosoma brucei Revealed by RNA Interference of a Mitotic Cyclin, Journal of Biological Chemistry, vol.278, issue.25, pp.22877-22886, 2003.
DOI : 10.1074/jbc.M300813200

P. Kumar and C. Wang, Dissociation of Cytokinesis Initiation from Mitotic Control in a Eukaryote, Eukaryotic Cell, vol.5, issue.1, pp.92-102, 2006.
DOI : 10.1128/EC.5.1.92-102.2006

A. Ploubidou, D. Robinson, R. Docherty, E. Ogbadoyi, and K. Gull, Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis, J. Cell Sci, vol.112, pp.4641-4650, 1999.

T. Hammarton, Cell cycle regulation in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.153, issue.1, pp.1-8, 2007.
DOI : 10.1016/j.molbiopara.2007.01.017

T. Hammarton, S. Monnerat, and J. Mottram, Cytokinesis in trypanosomatids, Current Opinion in Microbiology, vol.10, issue.6, pp.520-527, 2007.
DOI : 10.1016/j.mib.2007.10.005

D. Baron, Z. Kabututu, and K. Hill, Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement, Journal of Cell Science, vol.120, issue.9, pp.1513-1520, 2007.
DOI : 10.1242/jcs.004846

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, Journal of Cell Science, vol.119, issue.16, pp.3443-3455, 2006.
DOI : 10.1242/jcs.03078

URL : https://hal.archives-ouvertes.fr/hal-00108209

K. Ralston, A. Lerner, D. Diener, and K. Hill, Flagellar Motility Contributes to Cytokinesis in Trypanosoma brucei and Is Modulated by an Evolutionarily Conserved Dynein Regulatory System, Eukaryotic Cell, vol.5, issue.4, pp.696-711, 2006.
DOI : 10.1128/EC.5.4.696-711.2006

E. Ogbadoyi, D. Robinson, and K. Gull, A High-Order Trans-Membrane Structural Linkage Is Responsible for Mitochondrial Genome Positioning and Segregation by Flagellar Basal Bodies in Trypanosomes, Molecular Biology of the Cell, vol.14, issue.5, pp.1769-1779, 2003.
DOI : 10.1091/mbc.E02-08-0525

D. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, issue.6337, pp.731-733, 1991.
DOI : 10.1038/352731a0

P. Bastin, T. Pullen, F. Moreira-leite, and K. Gull, Inside and outside of the trypanosome flagellum:a multifunctional organelle, Microbes and Infection, vol.2, issue.15, pp.1865-1874, 2000.
DOI : 10.1016/S1286-4579(00)01344-7

K. Ralston, Z. Kabututu, J. Melehani, M. Oberholzer, and K. Hill, Flagellum: Moving Parasites in New Directions, Annual Review of Microbiology, vol.63, issue.1, pp.335-362, 2009.
DOI : 10.1146/annurev.micro.091208.073353

S. Vaughan and K. Gull, The trypanosome flagellum, Journal of Cell Science, vol.116, issue.5, pp.757-759, 2003.
DOI : 10.1242/jcs.00287

S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Dore et al., Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes, Molecular Biology of the Cell, vol.19, issue.3, pp.929-944, 2008.
DOI : 10.1091/mbc.E07-08-0749

URL : https://hal.archives-ouvertes.fr/pasteur-00217549

P. Bastin and K. Gull, Assembly and Function of Complex Flagellar Structures Illustrated by the Paraflagellar Rod of Trypanosomes, Protist, vol.150, issue.2, pp.113-123, 1999.
DOI : 10.1016/S1434-4610(99)70015-5

P. Bastin, T. Macrae, S. Francis, K. Matthews, and K. Gull, Flagellar Morphogenesis: Protein Targeting and Assembly in the Paraflagellar Rod of Trypanosomes, Molecular and Cellular Biology, vol.19, issue.12, pp.8191-8200, 1999.
DOI : 10.1128/MCB.19.12.8191

P. Bastin, T. Pullen, T. Sherwin, and K. Gull, Protein transport and flagellum assembly dynamics revealed by analysis of the paralyzed trypanosome mutant snl-1, J. Cell Sci, vol.112, pp.3769-3777, 1999.

J. Davidge, E. Chambers, H. Dickinson, K. Towers, M. Ginger et al., Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation, Journal of Cell Science, vol.119, issue.19, pp.3935-3943, 2006.
DOI : 10.1242/jcs.03203

J. Franklin and E. Ullu, Biochemical analysis of PIFTC3, the Trypanosoma brucei orthologue of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components, Molecular Microbiology, vol.178, pp.173-186, 2010.
DOI : 10.1111/j.1365-2958.2010.07322.x

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, The EMBO Journal, vol.22, issue.20, pp.5336-5346, 2003.
DOI : 10.1093/emboj/cdg518

URL : https://hal.archives-ouvertes.fr/hal-00108210

J. Crespo and M. Hall, Elucidating TOR Signaling and Rapamycin Action: Lessons from Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.66, issue.4, pp.579-591, 2002.
DOI : 10.1128/MMBR.66.4.579-591.2002

D. Martin and M. Hall, The expanding TOR signaling network, Current Opinion in Cell Biology, vol.17, issue.2, pp.158-166, 2005.
DOI : 10.1016/j.ceb.2005.02.008

A. Jaeschke, P. Dennis, and G. Thomas, mTOR: A Mediator of Intracellular Homeostasis, Curr. Top. Microbiol. Immunol, vol.279, pp.283-298, 2004.
DOI : 10.1007/978-3-642-18930-2_17

S. Wullschleger, R. Loewith, and M. Hall, TOR Signaling in Growth and Metabolism, Cell, vol.124, issue.3, pp.471-484, 2006.
DOI : 10.1016/j.cell.2006.01.016

S. Helliwell, P. Wagner, J. Kunz, M. Deuter-reinhard, R. Henriquez et al., TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast., Molecular Biology of the Cell, vol.5, issue.1, pp.105-118, 1994.
DOI : 10.1091/mbc.5.1.105

R. Loewith, J. E. Wullschleger, S. Lorberg, A. Crespo, J. Bonenfant et al., Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control, Molecular Cell, vol.10, issue.3, pp.457-468, 2002.
DOI : 10.1016/S1097-2765(02)00636-6

K. Wedaman, A. Reinke, S. Anderson, J. Y. Mccaffery, J. Powers et al., Tor Kinases Are in Distinct Membrane-associated Protein Complexes in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.14, issue.3, pp.1204-1220, 2003.
DOI : 10.1091/mbc.E02-09-0609

D. Sabatini, H. Erdjument-bromage, M. Lui, P. Tempst, and S. Snyder, RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs, Cell, vol.78, issue.1, pp.35-43, 1994.
DOI : 10.1016/0092-8674(94)90570-3

M. Cardenas, C. Hemenway, R. Muir, R. Ye, D. Fiorentino et al., Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands, EMBO J, vol.13, pp.5944-5957, 1994.

T. Noda and Y. Ohsumi, Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast, Journal of Biological Chemistry, vol.273, issue.7, pp.3963-3966, 1998.
DOI : 10.1074/jbc.273.7.3963

T. Powers and P. Walter, Regulation of Ribosome Biogenesis by the Rapamycin-sensitive TOR-signaling Pathway in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.10, issue.4, pp.987-1000, 1999.
DOI : 10.1091/mbc.10.4.987

E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M. Rüegg et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nature Cell Biology, vol.59, issue.11, pp.1122-1128, 2004.
DOI : 10.1006/jmbi.2000.4042

A. Schmidt, J. Kunz, and M. Hall, TOR2 is required for organization of the actin cytoskeleton in yeast, Proceedings of the National Academy of Sciences, vol.93, issue.24, pp.13780-13785, 1996.
DOI : 10.1073/pnas.93.24.13780

J. Heitman, N. Movva, and M. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, Science, vol.253, issue.5022, pp.905-909, 1991.
DOI : 10.1126/science.1715094

M. Harding, A. Galat, D. Uehling, and S. Schreiber, A receptor for the immuno-suppressant FK506 is a cis???trans peptidyl-prolyl isomerase, Nature, vol.341, issue.6244, pp.758-760, 1989.
DOI : 10.1038/341758a0

J. Siekierka, S. Hung, M. Poe, C. Lin, and N. Sigal, A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin, Nature, vol.341, issue.6244, pp.755-757, 1989.
DOI : 10.1038/341755a0

M. Chiu, H. Katz, and V. Berlin, RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex., Proceedings of the National Academy of Sciences, vol.91, issue.26, pp.12574-12578, 1994.
DOI : 10.1073/pnas.91.26.12574

J. Liu, J. Farmer, . Jr, W. Lane, J. Friedman et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes, Cell, vol.66, issue.4, pp.807-815, 1991.
DOI : 10.1016/0092-8674(91)90124-H

M. Chelu, C. Danila, C. Gilman, and S. Hamilton, Regulation of Ryanodine Receptors by FK506 Binding Proteins, Trends in Cardiovascular Medicine, vol.14, issue.6, pp.227-234, 2004.
DOI : 10.1016/j.tcm.2004.06.003

A. Cameron, F. Nucifora, . Jr, E. Fung, D. Livingston et al., FKBP12 Binds the Inositol 1,4,5-Trisphosphate Receptor at Leucine-Proline (1400-1401) and Anchors Calcineurin to this FK506-like Domain, Journal of Biological Chemistry, vol.272, issue.44, pp.27582-27588, 1997.
DOI : 10.1074/jbc.272.44.27582

A. Cameron, J. Steiner, A. Roskams, S. Ali, G. Ronnett et al., Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux, Cell, vol.83, issue.3, pp.463-472, 1995.
DOI : 10.1016/0092-8674(95)90124-8

A. Barquilla, J. Crespo, and M. Navarro, Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14579-14584, 2008.
DOI : 10.1073/pnas.0802668105

A. Barquilla and M. Navarro, Trypanosome TOR as a major regulator of cell growth and autophagy, Autophagy, vol.5, issue.2, pp.256-258, 2009.
DOI : 10.4161/auto.5.2.7591

A. Barquilla and M. Navarro, Trypanosome TOR complex 2 functions in cytokinesis, Cell Cycle, vol.8, issue.5, pp.697-699, 2009.
DOI : 10.4161/cc.8.5.7808

L. Madeira-da-silva and S. Beverley, Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity, Proceedings of the National Academy of Sciences, vol.107, issue.26, pp.11965-11970, 2010.
DOI : 10.1073/pnas.1004599107

A. Barquilla, M. Saldivia, R. Diaz, J. Bart, I. Vidal et al., Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei, Proceedings of the National Academy of Sciences, vol.109, issue.36, pp.14399-14404, 2012.
DOI : 10.1073/pnas.1210465109

E. Wirtz, S. Leal, C. Ochatt, and G. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.99, issue.1, pp.89-101, 1999.
DOI : 10.1016/S0166-6851(99)00002-X

V. Bellofatto and G. Cross, Expression of a bacterial gene in a trypanosomatid protozoan, Science, vol.244, issue.4909, pp.1167-1169, 1989.
DOI : 10.1126/science.2499047

H. Hirumi and K. Hirumi, Continuous Cultivation of Trypanosoma brucei Blood Stream Forms in a Medium Containing a Low Concentration of Serum Protein without Feeder Cell Layers, The Journal of Parasitology, vol.75, issue.6, pp.985-989, 1989.
DOI : 10.2307/3282883

G. Burkard, C. Fragoso, and I. Roditi, Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.153, issue.2, pp.220-223, 2007.
DOI : 10.1016/j.molbiopara.2007.02.008

B. Wickstead, K. Ersfeld, and K. Gull, Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.125, issue.1-2, pp.211-216, 2002.
DOI : 10.1016/S0166-6851(02)00238-4

S. Absalon, T. Blisnick, M. Bonhivers, L. Kohl, N. Cayet et al., Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei, Journal of Cell Science, vol.121, issue.22, pp.3704-3716, 2008.
DOI : 10.1242/jcs.035626

URL : https://hal.archives-ouvertes.fr/hal-00426339

D. Robinson, P. Beattie, T. Sherwin, and K. Gull, [25] Microtubules, tubulin, and microtubule-associated proteins of trypanosomes, Methods Enzymol, vol.196, pp.285-299, 1991.
DOI : 10.1016/0076-6879(91)96027-O

K. Hill, N. Hutchings, D. Russell, and J. Donelson, A novel protein targeting domain directs proteins to the anterior cytoplasmic face of the flagellar pocket in African trypanosomes, J. Cell Sci. 112 Pt, vol.18, pp.3091-3101, 1999.

K. Ralston and K. Hill, Trypanin, a Component of the Flagellar Dynein Regulatory Complex, Is Essential in Bloodstream Form African Trypanosomes, PLoS Pathogens, vol.196, issue.9, 2006.
DOI : 0076-6879(1991)196[0285:MTAMPO]2.0.CO;2

V. Hannaert, M. Albert, D. Rigden, M. Da-silva-giotto, O. Thiemann et al., Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase, European Journal of Biochemistry, vol.6, issue.15, pp.3205-3213, 2003.
DOI : 10.1046/j.1432-1033.2002.03086.x

T. Sherwin, A. Schneider, R. Sasse, T. Seebeck, and K. Gull, Distinct localization and cell cycle dependence of COOH terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei, The Journal of Cell Biology, vol.104, issue.3, pp.439-446, 1987.
DOI : 10.1083/jcb.104.3.439

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-109, 1999.
DOI : 10.1083/jcb.104.3.439

V. Dilbeck, M. Berberof, A. Van-cauwenberge, H. Alexandre, and E. Pays, Characterization of a coiled coil protein present in the basal body of Trypanosoma brucei, J. Cell Sci, vol.112, pp.4687-4694, 1999.

M. Bonhivers, S. Nowacki, N. Landrein, and D. Robinson, Biogenesis of the Trypanosome Endo-Exocytotic Organelle Is Cytoskeleton Mediated, PLoS Biology, vol.111, issue.5, 2008.
DOI : 10.1371/journal.pbio.0060105.sg005

URL : https://hal.archives-ouvertes.fr/hal-00318588

D. Nolan, M. Geuskens, and E. Pays, N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei, Current Biology, vol.9, issue.20, pp.1169-1172, 1999.
DOI : 10.1016/S0960-9822(00)80018-4

M. Decenzo, S. Park, B. Jarrett, R. Aldape, O. Futer et al., FK506-binding protein mutational analysis: defining the active-site residue contributions to catalysis and the stability of ligand complexes, "Protein Engineering, Design and Selection", vol.9, issue.2, pp.173-180, 1996.
DOI : 10.1093/protein/9.2.173

M. Wear and M. Walkinshaw, Determination of the rate constants for the FK506 binding protein/rapamycin interaction using surface plasmon resonance: An alternative sensor surface for Ni2+???nitrilotriacetic acid immobilization of His-tagged proteins, Analytical Biochemistry, vol.371, issue.2, pp.250-252, 2007.
DOI : 10.1016/j.ab.2007.06.034

T. Sherwin and K. Gull, The Cell Division Cycle of Trypanosoma brucei brucei: Timing of Event Markers and Cytoskeletal Modulations, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.323, issue.1218, 1989.
DOI : 10.1098/rstb.1989.0037

J. Rodríguez, M. Lopez, M. Thayer, Y. Zhao, M. Oberholzer et al., Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks, Proceedings of the National Academy of Sciences, vol.106, issue.46, pp.19322-19327, 2009.
DOI : 10.1073/pnas.0907001106

S. Absalon, L. Kohl, C. Branche, T. Blisnick, G. Toutirais et al., Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei, PLoS ONE, vol.129, issue.24, 2007.
DOI : 10.1371/journal.pone.0000437.s006

URL : https://hal.archives-ouvertes.fr/pasteur-00169134

N. Hutchings, J. Donelson, and K. Hill, Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes, The Journal of Cell Biology, vol.9, issue.5, pp.867-877, 2002.
DOI : 10.1016/S0166-6851(99)00002-X

H. Price, A. Peltan, M. Stark, and D. Smith, The small GTPase ARL2 is required for cytokinesis in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.173, issue.2, pp.123-131, 2010.
DOI : 10.1016/j.molbiopara.2010.05.016

I. Norville, K. Breitbach, K. Eske-pogodda, N. Harmer, M. Sarkar-tyson et al., A novel FK-506-binding-like protein that lacks peptidyl-prolyl isomerase activity is involved in intracellular infection and in vivo virulence of Burkholderia pseudomallei, Microbiology, vol.157, issue.9, pp.2629-2638, 2011.
DOI : 10.1099/mic.0.049163-0

A. Timerman, G. Wiederrecht, M. A. Fleischer, and S. , Characterization of an Exchange Reaction between Soluble FKBP-12 and the FKBP{middle dot}Ryanodine Receptor Complex: MODULATION BY FKBP MUTANTS DEFICIENT IN PEPTIDYL-PROLYL ISOMERASE ACTIVITY, Journal of Biological Chemistry, vol.270, issue.6, pp.2451-2459, 1995.
DOI : 10.1074/jbc.270.6.2451

S. Lacomble, S. Vaughan, C. Gadelha, M. Morphew, M. Shaw et al., Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography, Journal of Cell Science, vol.122, issue.8, pp.1081-1090, 2009.
DOI : 10.1242/jcs.045740

C. Gadelha, S. Rothery, M. Morphew, J. Mcintosh, N. Severs et al., Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes, Proceedings of the National Academy of Sciences, vol.106, issue.41, pp.17425-17430, 2009.
DOI : 10.1073/pnas.0909289106

K. Dolinski, S. Muir, M. Cardenas, and J. Heitman, All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.94, issue.24, pp.13093-13098, 1997.
DOI : 10.1073/pnas.94.24.13093

M. Holwill and J. Mcgregor, Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti, J. Exp. Biol, vol.65, pp.229-242, 1976.

H. Ho and S. Suarez, Characterization of the Intracellular Calcium Store at the Base of the Sperm Flagellum That Regulates Hyperactivated Motility1, Biology of Reproduction, vol.68, issue.5, pp.1590-1596, 2003.
DOI : 10.1095/biolreprod.102.011320

O. Woodward and A. Willows, Nervous control of ciliary beating by Cl-, Ca2+ and calmodulin in Tritonia diomedea, Journal of Experimental Biology, vol.209, issue.14, pp.2765-2773, 2006.
DOI : 10.1242/jeb.02377

S. Uppaluri, J. Nagler, E. Stellamanns, N. Heddergott, S. Herminghaus et al., Impact of Microscopic Motility on the Swimming Behavior of Parasites: Straighter Trypanosomes are More Directional, PLoS Computational Biology, vol.3, issue.496, 2011.
DOI : 10.1371/journal.pcbi.1002058.s005

R. Broadhead, H. Dawe, H. Farr, S. Griffiths, S. Hart et al., Flagellar motility is required for the viability of the bloodstream trypanosome, Nature, vol.323, issue.7081, pp.224-227, 2006.
DOI : 10.1038/nature04541

T. Sherwin and K. Gull, Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes, Cell, vol.57, issue.2, pp.211-221, 1989.
DOI : 10.1016/0092-8674(89)90959-8

L. Briggs, P. Mckean, A. Baines, F. Moreira-leite, J. Davidge et al., The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction, Journal of Cell Science, vol.117, issue.9, pp.1641-1651, 2004.
DOI : 10.1242/jcs.00995

F. Moreira-leite, T. Sherwin, L. Kohl, and K. Gull, A Trypanosome Structure Involved in Transmitting Cytoplasmic Information During Cell Division, Science, vol.294, issue.5542, pp.610-612, 2001.
DOI : 10.1126/science.1063775

D. Robinson, T. Sherwin, A. Ploubidou, E. Byard, and K. Gull, Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle, The Journal of Cell Biology, vol.128, issue.6, pp.1163-1172, 1995.
DOI : 10.1083/jcb.128.6.1163

Q. Zhou, B. Liu, Y. Sun, and C. He, A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei, Journal of Cell Science, vol.124, issue.22, pp.3848-3858, 2011.
DOI : 10.1242/jcs.087676

R. Sasse and K. Gull, Tubulin posttranslational modifications and the construction of microtubular organelles in Trypanosoma brucei, J. Cell Sci, vol.90, pp.577-589, 1988.