J. Burkhardt, E. Carrizosa, and M. Shaffer, The Actin Cytoskeleton in T Cell Activation, Annual Review of Immunology, vol.26, issue.1, pp.233-259, 2008.
DOI : 10.1146/annurev.immunol.26.021607.090347

R. Lasserre and A. Alcover, Cytoskeletal cross-talk in the control of T cell antigen receptor signaling, FEBS Letters, vol.1143, issue.24, pp.4845-4850, 2010.
DOI : 10.1016/j.febslet.2010.09.001

URL : https://hal.archives-ouvertes.fr/pasteur-00718645

N. Martin-cofreces, B. Alarcon, and F. Sanchez-madrid, Tubulin and Actin Interplay at the T Cell and Antigen-Presenting Cell Interface, Frontiers in Immunology, vol.2, p.24, 2011.
DOI : 10.3389/fimmu.2011.00024

T. Gomez and D. Billadeau, T Cell Activation and the Cytoskeleton: You Can't Have One Without the Other, Adv Immunol, vol.97, pp.1-64, 2008.
DOI : 10.1016/S0065-2776(08)00001-1

S. Valitutti, M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia, Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton, Journal of Experimental Medicine, vol.181, issue.2, pp.577-584, 1995.
DOI : 10.1084/jem.181.2.577

G. Campi, R. Varma, and M. Dustin, Actin and agonist MHC???peptide complex???dependent T cell receptor microclusters as scaffolds for signaling, The Journal of Experimental Medicine, vol.114, issue.8, pp.1031-1036, 2005.
DOI : 10.1038/nature03391

B. Geiger, D. Rosen, and G. Berke, Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells, The Journal of Cell Biology, vol.95, issue.1, pp.137-143, 1982.
DOI : 10.1083/jcb.95.1.137

A. Kupfer and G. Dennert, Reorientation of the microtubule organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells, J Immunol, vol.133, pp.2762-2766, 1984.

J. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.17, issue.7110, pp.462-465, 2006.
DOI : 10.1038/nature05071

J. Kuhn and M. Poenie, Dynamic Polarization of the Microtubule Cytoskeleton during CTL-Mediated Killing, Immunity, vol.16, issue.1, pp.111-121, 2002.
DOI : 10.1016/S1074-7613(02)00262-5

R. Lasserre, Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse, The EMBO Journal, vol.161, issue.14, pp.2301-2314, 2010.
DOI : 10.1038/ni1272

URL : https://hal.archives-ouvertes.fr/pasteur-00593159

B. Lowin-kropf, V. Shapiro, and A. Weiss, Cytoskeletal Polarization of T Cells Is Regulated by an Immunoreceptor Tyrosine-based Activation Motif???dependent Mechanism, The Journal of Cell Biology, vol.137, issue.4, pp.861-871, 1998.
DOI : 10.1084/jem.160.5.1284

N. Martin-cofreces, Role of Fyn in the Rearrangement of Tubulin Cytoskeleton Induced through TCR, The Journal of Immunology, vol.176, issue.7, pp.4201-4207, 2006.
DOI : 10.4049/jimmunol.176.7.4201

URL : https://hal.archives-ouvertes.fr/pasteur-00164640

A. Tsun, Centrosome docking at the immunological synapse is controlled by Lck signaling, The Journal of Cell Biology, vol.268, issue.4, pp.663-674, 2011.
DOI : 10.1083/jcb.201008140.dv

N. Blanchard, D. Bartolo, V. Hivroz, and C. , In the Immune Synapse, ZAP-70 Controls T Cell Polarization and Recruitment of Signaling Proteins but Not Formation of the Synaptic Pattern, Immunity, vol.17, issue.4, pp.389-399, 2002.
DOI : 10.1016/S1074-7613(02)00421-1

URL : https://hal.archives-ouvertes.fr/hal-00138115

J. Combs, Recruitment of dynein to the Jurkat immunological synapse, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14883-14888, 2006.
DOI : 10.1073/pnas.0600914103

E. Quann, X. Liu, G. Altan-bonnet, and M. Huse, A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells, Nature Immunology, vol.1761, issue.7, pp.647-654, 2011.
DOI : 10.1083/jcb.201009135

L. Stowers, D. Yelon, L. Berg, and J. Chant, Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.5027-5031, 1995.
DOI : 10.1073/pnas.92.11.5027

T. Gomez, K. Kumar, R. Medeiros, Y. Shimizu, P. Leibson et al., Formins Regulate the Actin-Related Protein 2/3 Complex-Independent Polarization of the Centrosome to the Immunological Synapse, Immunity, vol.26, issue.2, pp.177-190, 2007.
DOI : 10.1016/j.immuni.2007.01.008

K. Chemin, Cytokine Secretion by CD4+ T Cells at the Immunological Synapse Requires Cdc42-Dependent Local Actin Remodeling but Not Microtubule Organizing Center Polarity, The Journal of Immunology, vol.189, issue.5, pp.2159-2168, 2012.
DOI : 10.4049/jimmunol.1200156

S. Etienne-manneville, Polarity proteins in migration and invasion, Oncogene, vol.27, issue.55, pp.6970-6980, 2008.
DOI : 10.1038/ncb1603

L. Andres-delgado, INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells, The Journal of Cell Biology, vol.162, issue.6, pp.1025-1037, 2012.
DOI : 10.1083/jcb.201202137.dv

J. Serrador, J. Cabrero, D. Sancho, M. Mittelbrunn, A. Urzainqui et al., HDAC6 Deacetylase Activity Links the Tubulin Cytoskeleton with Immune Synapse Organization, Immunity, vol.20, issue.4, pp.417-428, 2004.
DOI : 10.1016/S1074-7613(04)00078-0

N. Martin-cofreces, MTOC translocation modulates IS formation and controls sustained T cell signaling, The Journal of Cell Biology, vol.1744, issue.5, pp.951-962, 2008.
DOI : 10.1084/jem.185.10.1877

E. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells, Nature Immunology, vol.5, issue.6, pp.627-635, 2009.
DOI : 10.1038/ni.1734

S. Bunnell, V. Kapoor, R. Trible, W. Zhang, and L. Samelson, Dynamic Actin Polymerization Drives T Cell Receptor???Induced Spreading, Immunity, vol.14, issue.3, pp.315-329, 2001.
DOI : 10.1016/S1074-7613(01)00112-1

V. Das, Activation-Induced Polarized Recycling Targets T Cell Antigen Receptors to the Immunological Synapse, Immunity, vol.20, issue.5, pp.577-588, 2004.
DOI : 10.1016/S1074-7613(04)00106-2

URL : https://hal.archives-ouvertes.fr/pasteur-00137478

A. Hashimoto-tane, Dynein-Driven Transport of T Cell Receptor Microclusters Regulates Immune Synapse Formation and T Cell Activation, Immunity, vol.34, issue.6, pp.919-931, 2011.
DOI : 10.1016/j.immuni.2011.05.012

N. Martin-cofreces, End-binding protein 1 controls signal propagation from the T cell receptor, The EMBO Journal, vol.195, issue.21, pp.4140-4152, 2012.
DOI : 10.1038/emboj.2012.242

M. Arpin, M. Algrain, and D. Louvard, Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1, Current Opinion in Cell Biology, vol.6, issue.1, pp.136-141, 1994.
DOI : 10.1016/0955-0674(94)90127-9

A. Bretscher, D. Chambers, R. Nguyen, and D. Reczek, ERM-Merlin and EBP50 Protein Families in Plasma Membrane Organization and Function, Annual Review of Cell and Developmental Biology, vol.16, issue.1
DOI : 10.1146/annurev.cellbio.16.1.113

J. Serrador, CD43 interacts with moesin and ezrin and regulates its distribution to the uropods of T lymphocytes at the cell-cell contacts, Blood, vol.91, pp.4632-4644, 1998.

J. Serrador, Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization, The Journal of Cell Biology, vol.107, issue.6, pp.1409-1423, 1997.
DOI : 10.1083/jcb.120.2.437

A. Roumier, The Membrane-Microfilament Linker Ezrin Is Involved in the Formation of the Immunological Synapse and in T Cell Activation, Immunity, vol.15, issue.5, pp.715-728, 2001.
DOI : 10.1016/S1074-7613(01)00225-4

URL : https://hal.archives-ouvertes.fr/hal-00161327

J. Delon, K. Kaibuchi, and R. Germain, Exclusion of CD43 from the Immunological Synapse Is Mediated by Phosphorylation-Regulated Relocation of the Cytoskeletal Adaptor Moesin, Immunity, vol.15, issue.5, pp.691-701, 2001.
DOI : 10.1016/S1074-7613(01)00231-X

E. Allenspach, ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse, Immunity, vol.15, issue.5, pp.739-750, 2001.
DOI : 10.1016/S1074-7613(01)00224-2

P. Van-der-merwe, S. Davis, A. Shaw, and M. Dustin, Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition, Seminars in Immunology, vol.12, issue.1, pp.5-21, 2000.
DOI : 10.1006/smim.2000.0203

N. Savage, S. Kimzey, S. Bromley, K. Johnson, M. Dustin et al., Polar Redistribution of the Sialoglycoprotein CD43: Implications for T Cell Function, The Journal of Immunology, vol.168, issue.8, pp.3740-3746, 2002.
DOI : 10.4049/jimmunol.168.8.3740

J. Tong, CD43 Regulation of T Cell Activation Is Not through Steric Inhibition of T Cell???APC Interactions but through an Intracellular Mechanism, The Journal of Experimental Medicine, vol.140, issue.9, pp.1277-1283, 2004.
DOI : 10.1084/jem.192.2.183

A. Gautreau, D. Louvard, and M. Arpin, ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling, Current Opinion in Cell Biology, vol.14, issue.1, pp.104-109, 2002.
DOI : 10.1016/S0955-0674(01)00300-3

N. Belkina, Y. Liu, J. Hao, H. Karasuyama, and S. Shaw, LOK is a major ERM kinase in resting lymphocytes and regulates cytoskeletal rearrangement through ERM phosphorylation, Proceedings of the National Academy of Sciences, vol.106, issue.12, pp.4707-4712, 2009.
DOI : 10.1073/pnas.0805963106

T. Matsui, Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association, The Journal of Cell Biology, vol.268, issue.3, pp.647-657, 1998.
DOI : 10.1083/jcb.120.2.437

S. Pietromonaco, P. Simons, A. Altman, and L. Elias, Protein Kinase C-theta Phosphorylation of Moesin in the Actin-binding Sequence, Journal of Biological Chemistry, vol.273, issue.13, pp.7594-7603, 1998.
DOI : 10.1074/jbc.273.13.7594

S. Faure, ERM proteins regulate cytoskeleton relaxation promoting T cell???APC conjugation, Nature Immunology, vol.7, issue.3, pp.272-279, 2004.
DOI : 10.1038/ni1039

M. Brown, Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization, Blood, vol.102, issue.12, pp.3890-3899, 2003.
DOI : 10.1182/blood-2002-12-3807

T. Ilani, C. Khanna, M. Zhou, T. Veenstra, and A. Bretscher, Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin, The Journal of Cell Biology, vol.91, issue.4, pp.733-746, 2007.
DOI : 10.1083/jcb.140.4.885

B. Treanor, The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor, Immunity, vol.32, issue.2, pp.187-199, 2010.
DOI : 10.1016/j.immuni.2009.12.005

M. Arpin, D. Chirivino, A. Naba, and I. Zwaenepoel, Emerging role for ERM proteins in cell adhesion and migration, Cell Adhesion & Migration, vol.107, issue.2, pp.199-206, 2011.
DOI : 10.1128/MCB.00757-06

B. Fievet, D. Louvard, and M. Arpin, ERM proteins in epithelial cell organization and functions, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.5, pp.653-660, 2007.
DOI : 10.1016/j.bbamcr.2006.06.013

S. Charrin and A. Alcover, Role of ERM (ezrin-radixin-moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling, Frontiers in Bioscience, vol.11, issue.1, pp.1987-1997, 2006.
DOI : 10.2741/1940

URL : https://hal.archives-ouvertes.fr/hal-00138079

M. Shaffer, Ezrin and Moesin Function Together to Promote T Cell Activation, The Journal of Immunology, vol.182, issue.2, pp.1021-1032, 2009.
DOI : 10.4049/jimmunol.182.2.1021

A. Grakoui, The Immunological Synapse: A Molecular Machine Controlling T Cell Activation, Science, vol.285, issue.5425, pp.221-227, 1999.
DOI : 10.1126/science.285.5425.221

S. Bunnell, T cell receptor ligation induces the formation of dynamically regulated signaling assemblies, The Journal of Cell Biology, vol.115, issue.7, pp.1263-1275, 2002.
DOI : 10.1016/S1074-7613(00)80606-8

T. Schnyder, B Cell Receptor-Mediated Antigen Gathering Requires Ubiquitin Ligase Cbl and Adaptors Grb2 and Dok-3 to Recruit Dynein to the Signaling Microcluster, Immunity, vol.34, issue.6, pp.905-918, 2011.
DOI : 10.1016/j.immuni.2011.06.001

J. Manneville, M. Jehanno, and S. Etienne-manneville, Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity, The Journal of Cell Biology, vol.112, issue.3, pp.585-598, 2010.
DOI : 10.1091/mbc.01-11-0539

URL : https://hal.archives-ouvertes.fr/pasteur-00542451

J. Round, L. Humphries, T. Tomassian, P. Mittelstadt, M. Zhang et al., Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-??B transcription factors, Nature Immunology, vol.22, issue.2, pp.154-161, 2007.
DOI : 10.1084/jem.20030976

R. Lue, E. Brandin, E. Chan, and D. Branton, Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1-2 conformational unit and an alternatively spliced domain, The Journal of Cell Biology, vol.135, issue.4, pp.1125-1137, 1996.
DOI : 10.1083/jcb.135.4.1125

M. Fukata, Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170, Cell, vol.109, issue.7, pp.873-885, 2002.
DOI : 10.1016/S0092-8674(02)00800-0

J. Gorman, The Cytoskeletal Adaptor Protein IQGAP1 Regulates TCR-Mediated Signaling and Filamentous Actin Dynamics, The Journal of Immunology, vol.188, issue.12, pp.6135-6144, 2012.
DOI : 10.4049/jimmunol.1103487

V. Das, Membrane-cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation, Immunological Reviews, vol.112, issue.1, pp.123-135, 2002.
DOI : 10.1046/j.1462-5822.2001.00155.x

URL : https://hal.archives-ouvertes.fr/hal-00137570

B. Nal, Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation, International Immunology, vol.16, issue.2, pp.231-240, 2004.
DOI : 10.1093/intimm/dxh022

N. Foger, L. Rangell, D. Danilenko, and A. Chan, Requirement for Coronin 1 in T Lymphocyte Trafficking and Cellular Homeostasis, Science, vol.313, issue.5788, pp.839-842, 2006.
DOI : 10.1126/science.1130563

M. Haraldsson, The Lupus-Related Lmb3 Locus Contains a Disease-Suppressing Coronin-1A Gene Mutation, Immunity, vol.28, issue.1, pp.40-51, 2008.
DOI : 10.1016/j.immuni.2007.11.023

P. Mueller, Regulation of T cell survival through coronin-1???mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering, Nature Immunology, vol.21, issue.4, pp.424-431, 2008.
DOI : 10.1038/ni1570

B. Mugnier, Coronin-1A Links Cytoskeleton Dynamics to TCR????-Induced Cell Signaling, PLoS ONE, vol.266, issue.10, p.3467, 2008.
DOI : 10.1371/journal.pone.0003467.s011

URL : https://hal.archives-ouvertes.fr/hal-00398678

H. Soares, Regulated vesicle fusion generates signaling nanoterritiries that control T-cell activation at the immunological synapse, J Exp Med, 2013.

B. Favier, N. Burroughs, L. Wedderburn, and S. Valitutti, TCR dynamics on the surface of living T cells, International Immunology, vol.13, issue.12, pp.1525-1532, 2001.
DOI : 10.1093/intimm/13.12.1525

C. W?-ulfing and M. Davis, A Receptor/Cytoskeletal Movement Triggered by Costimulation During T Cell Activation, Science, vol.282, issue.5397, pp.2266-2269, 1998.
DOI : 10.1126/science.282.5397.2266

A. Douglass and R. Vale, Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells, Cell, vol.121, issue.6, pp.937-950, 2005.
DOI : 10.1016/j.cell.2005.04.009

A. Batista, J. Millan, M. Mittelbrunn, F. Sanchez-madrid, and M. Alonso, Recruitment of Transferrin Receptor to Immunological Synapse in Response to TCR Engagement, The Journal of Immunology, vol.172, issue.11, pp.6709-6714, 2004.
DOI : 10.4049/jimmunol.172.11.6709

A. Alcover and B. Alarc-on, Internalization and Intracellular Fate of TCR-CD3 Complexes, Critical Reviews??? in Immunology, vol.20, issue.4, pp.325-346, 2000.
DOI : 10.1615/CritRevImmunol.v20.i4.20

URL : https://hal.archives-ouvertes.fr/hal-00137563

T. Sudhof and J. Rizo, Synaptic Vesicle Exocytosis, Cold Spring Harbor Perspectives in Biology, vol.3, issue.12, p.3, 2011.
DOI : 10.1101/cshperspect.a005637

J. Kappes, B. Alarc-on, and J. Regueiro, T lymphocyte receptor deficiencies, Current Opinion in Immunology, vol.7, issue.4, pp.441-447, 1995.
DOI : 10.1016/0952-7915(95)80086-7

R. Klausner, J. Lippincott-schwartz, and J. Bonifacino, The T Cell Antigen Receptor: Insights into Organelle Biology, Annual Review of Cell Biology, vol.6, issue.1, pp.403-431, 1990.
DOI : 10.1146/annurev.cb.06.110190.002155

S. Ono, I. Ohno, and T. Saito, Rapid turnover of the CD3?? chain independent of the TCR-CD3 complex in normal T cells, Immunity, vol.2, issue.6, pp.639-644, 1995.
DOI : 10.1016/1074-7613(95)90008-X

F. Finetti, Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse, Nature Cell Biology, vol.25, issue.11, pp.1332-1339, 2009.
DOI : 10.1038/ncb1977

F. Finetti and C. Baldari, Compartmentalization of signaling by vesicular trafficking: a shared building design for the immune synapse and the primary cilium, Immunological Reviews, vol.138, issue.1, pp.97-112, 2013.
DOI : 10.1111/imr.12018

E. Derivery, C. Sousa, J. Gautier, B. Lombard, D. Loew et al., The Arp2/3 Activator WASH Controls the Fission of??Endosomes through a Large Multiprotein Complex, Developmental Cell, vol.17, issue.5, pp.712-723, 2009.
DOI : 10.1016/j.devcel.2009.09.010

T. Gomez and D. Billadeau, A FAM21-Containing WASH Complex Regulates Retromer-Dependent Sorting, Developmental Cell, vol.17, issue.5, pp.699-711, 2009.
DOI : 10.1016/j.devcel.2009.09.009

J. Piotrowski, T. Gomez, R. Schoon, A. Mangalam, and D. Billadeau, WASH Knockout T Cells Demonstrate Defective Receptor Trafficking, Proliferation, and Effector Function, Molecular and Cellular Biology, vol.33, issue.5, pp.958-973, 2013.
DOI : 10.1128/MCB.01288-12

G. Patino-lopez, Rab35 and Its GAP EPI64C in T Cells Regulate Receptor Recycling and Immunological Synapse Formation, Journal of Biological Chemistry, vol.283, issue.26, pp.18323-18330, 2008.
DOI : 10.1074/jbc.M800056200

T. Springer and M. Dustin, Integrin inside-out signaling and the immunological synapse, Current Opinion in Cell Biology, vol.24, issue.1, pp.107-115, 2012.
DOI : 10.1016/j.ceb.2011.10.004

M. Bretscher, . Aguado, and . Velasco, Membrane traffic during cell locomotion, Current Opinion in Cell Biology, vol.10, issue.4, pp.537-541, 1998.
DOI : 10.1016/S0955-0674(98)80070-7

P. Caswell, S. Vadrevu, and J. Norman, Integrins: masters and slaves of endocytic transport, Nature Reviews Molecular Cell Biology, vol.9, issue.12, pp.843-853, 2009.
DOI : 10.1038/nrm2799

S. Paccani, adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse, The Journal of Experimental Medicine, vol.158, issue.6, pp.1317-1330, 2011.
DOI : 10.1101/cshperspect.a002279

P. Linsley, J. Bradshaw, J. Greene, R. Peach, K. Bennett et al., Intracellular Trafficking of CTLA-4 and Focal Localization Towards Sites of TCR Engagement, Immunity, vol.4, issue.6, pp.535-543, 1996.
DOI : 10.1016/S1074-7613(00)80480-X

T. Yokosuka, Spatiotemporal Basis of CTLA-4 Costimulatory Molecule-Mediated Negative Regulation of T Cell Activation, Immunity, vol.33, issue.3, pp.326-339, 2010.
DOI : 10.1016/j.immuni.2010.09.006

L. Ehrlich, P. Ebert, M. Krummel, A. Weiss, and M. Davis, Dynamics of p56lck Translocation to the T Cell Immunological Synapse following Agonist and Antagonist Stimulation, Immunity, vol.17, issue.6, pp.809-822, 2002.
DOI : 10.1016/S1074-7613(02)00481-8

O. Anton, An essential role for the MAL protein in targeting Lck to the plasma membrane of human T lymphocytes, The Journal of Experimental Medicine, vol.1, issue.13, pp.3201-3213, 2008.
DOI : 10.1016/0092-8674(92)90189-J

O. Anton, L. Andres-delgado, N. Reglero-real, A. Batista, and M. Alonso, MAL Protein Controls Protein Sorting at the Supramolecular Activation Cluster of Human T Lymphocytes, The Journal of Immunology, vol.186, issue.11, pp.6345-6356, 2011.
DOI : 10.4049/jimmunol.1003771

M. Gorska, Q. Liang, Z. Karim, and R. Alam, Uncoordinated 119 Protein Controls Trafficking of Lck via the Rab11 Endosome and Is Critical for Immunological Synapse Formation, The Journal of Immunology, vol.183, issue.3, pp.1675-1684, 2009.
DOI : 10.4049/jimmunol.0900792

G. Bonello, Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment, Journal of Cell Science, vol.117, issue.7, pp.1009-1016, 2004.
DOI : 10.1242/jcs.00968

M. Purbhoo, Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse, Science Signaling, vol.3, issue.121, p.36, 2010.
DOI : 10.1126/scisignal.2000645

P. Larghi, VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites, Nature Immunology, vol.172, issue.7, pp.723-731, 2013.
DOI : 10.1002/jbio.200900089

L. Balagopalan, V. Barr, R. Kortum, A. Park, and L. Samelson, Cutting Edge: Cell Surface Linker for Activation of T Cells Is Recruited to Microclusters and Is Active in Signaling, The Journal of Immunology, vol.190, issue.8, pp.3849-3853, 2013.
DOI : 10.4049/jimmunol.1202760

E. Sherman, Functional Nanoscale Organization of Signaling Molecules Downstream of the T Cell Antigen Receptor, Immunity, vol.35, issue.5, pp.705-720, 2011.
DOI : 10.1016/j.immuni.2011.10.004

B. Lillemeier, M. Mortelmaier, M. Forstner, J. Huppa, J. Groves et al., TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation, Nature Immunology, vol.128, issue.1, pp.90-96, 2010.
DOI : 10.1038/ni.1832

D. Williamson, Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nature Immunology, vol.87, issue.7, pp.655-662, 2011.
DOI : 10.1002/jbio.200900089

M. Purbhoo, The function of sub-synaptic vesicles during T-cell activation, Immunological Reviews, vol.107, issue.1, pp.36-48, 2013.
DOI : 10.1111/imr.12012

A. Kupfer, T. Mosmann, and H. Kupfer, Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells., Proceedings of the National Academy of Sciences, vol.88, issue.3, pp.775-779, 1991.
DOI : 10.1073/pnas.88.3.775

D. Depoil, Immunological Synapses Are Versatile Structures Enabling Selective T Cell Polarization, Immunity, vol.22, issue.2, pp.185-194, 2005.
DOI : 10.1016/j.immuni.2004.12.010

M. Huse, B. Lillemeier, M. Kuhns, D. Chen, and M. Davis, T cells use two directionally distinct pathways for cytokine secretion, Nature Immunology, vol.419, issue.3, pp.247-255, 2006.
DOI : 10.1038/ni1304

F. Bertrand, Activation of the Ancestral Polarity Regulator Protein Kinase C?? at the Immunological Synapse Drives Polarization of Th Cell Secretory Machinery toward APCs, The Journal of Immunology, vol.185, issue.5, pp.2887-2894, 2010.
DOI : 10.4049/jimmunol.1000739

G. De-saint-basile, G. Menasche, and A. Fischer, Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules, Nature Reviews Immunology, vol.19, issue.8, pp.568-579, 2010.
DOI : 10.1038/nri2803

K. Angus and G. Griffiths, Cell polarisation and the immunological synapse, Current Opinion in Cell Biology, vol.25, issue.1, pp.85-91, 2013.
DOI : 10.1016/j.ceb.2012.08.013

C. Hivroz, K. Chemin, M. Tourret, and A. Bohineust, Crosstalk between T Lymphocytes and Dendritic Cells, Critical Reviews??? in Immunology, vol.32, issue.2, pp.139-155, 2012.
DOI : 10.1615/CritRevImmunol.v32.i2.30

G. Griffiths, A. Tsun, and J. Stinchcombe, The immunological synapse: a focal point for endocytosis and exocytosis, The Journal of Cell Biology, vol.110, issue.3, pp.399-406, 2010.
DOI : 10.1093/hmg/ddi076

J. Stinchcombe, G. Bossi, S. Booth, and G. Griffiths, The Immunological Synapse of CTL Contains a Secretory Domain and Membrane Bridges, Immunity, vol.15, issue.5, pp.751-761, 2001.
DOI : 10.1016/S1074-7613(01)00234-5

M. Kurowska, Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex, Blood, vol.119, issue.17, pp.3879-3889, 2012.
DOI : 10.1182/blood-2011-09-382556

M. Faroudi, Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: Manifestation of a dual activation threshold, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.14145-14150, 2003.
DOI : 10.1073/pnas.2334336100

T. Yokosuka, Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76, Nature Immunology, vol.235, issue.12
DOI : 10.1038/ni1272

K. Lee, A. Holdorf, M. Dustin, A. Chan, P. Allen et al., T Cell Receptor Signaling Precedes Immunological Synapse Formation, Science, vol.295, issue.5559, pp.1539-1542, 2002.
DOI : 10.1126/science.1067710

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. Dustin, T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster, Immunity, vol.25, issue.1, pp.117-127, 2006.
DOI : 10.1016/j.immuni.2006.04.010

L. Balagopalan, c-Cbl-Mediated Regulation of LAT-Nucleated Signaling Complexes, Molecular and Cellular Biology, vol.27, issue.24, pp.8622-8636, 2007.
DOI : 10.1128/MCB.00467-07

V. Barr, T-Cell Antigen Receptor-Induced Signaling Complexes: Internalization Via a Cholesterol-Dependent Endocytic Pathway, Traffic, vol.138, issue.9, pp.1143-1162, 2006.
DOI : 10.1111/j.1600-0854.2006.00464.x

T. Yokosuka, M. Takamatsu, W. Kobayashi-imanishi, A. Hashimoto-tane, M. Azuma et al., Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2, The Journal of Experimental Medicine, vol.209, issue.6, pp.1201-1217, 2012.
DOI : 10.1038/nri2326

K. Mossman, G. Campi, J. Groves, and M. Dustin, Altered TCR Signaling from Geometrically Repatterned Immunological Synapses, Science, vol.310, issue.5751, pp.1191-1193, 2005.
DOI : 10.1126/science.1119238

K. Nguyen, N. Sylvain, and S. Bunnell, T Cell Costimulation via the Integrin VLA-4 Inhibits the Actin-Dependent Centralization of Signaling Microclusters Containing the Adaptor SLP-76, Immunity, vol.28, issue.6, pp.810-821, 2008.
DOI : 10.1016/j.immuni.2008.04.019

J. Hammer and J. Burkhardt, Controversy and consensus regarding myosin II function at the immunological synapse, Current Opinion in Immunology, vol.25, issue.3, pp.300-306, 2013.
DOI : 10.1016/j.coi.2013.03.010

A. Babich, S. Li, O. Connor, R. Milone, M. Freedman et al., F-actin polymerization and retrograde flow drive sustained PLC??1 signaling during T cell activation, The Journal of Cell Biology, vol.269, issue.6, pp.775-787, 2012.
DOI : 10.1083/jcb.201201018.dv

S. Vardhana, K. Choudhuri, R. Varma, and M. Dustin, Essential Role of Ubiquitin and TSG101 Protein in Formation and Function of the Central Supramolecular Activation Cluster, Immunity, vol.32, issue.4, pp.531-540, 2010.
DOI : 10.1016/j.immuni.2010.04.005

A. Monjas, A. Alcover, and B. Alarcon, Engaged and Bystander T Cell Receptors Are Down-modulated by Different Endocytotic Pathways, Journal of Biological Chemistry, vol.279, issue.53, pp.55376-55384, 2004.
DOI : 10.1074/jbc.M409342200

N. Martinez-martin, T Cell Receptor Internalization from the Immunological Synapse Is Mediated by TC21 and RhoG GTPase-Dependent Phagocytosis, Immunity, vol.35, issue.2, pp.208-222, 2011.
DOI : 10.1016/j.immuni.2011.06.003

K. Ahmed and J. Xiang, Mechanisms of cellular communication through intercellular protein transfer, Journal of Cellular and Molecular Medicine, vol.95, issue.7, pp.1458-1473, 2011.
DOI : 10.1111/j.1582-4934.2010.01008.x

L. Balagopalan, Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation, Proceedings of the National Academy of Sciences, vol.108, issue.7, pp.2885-2890, 2011.
DOI : 10.1073/pnas.1007098108

L. Balagopalan, V. Barr, and L. Samelson, Endocytic events in TCR signaling: focus on adapters in microclusters, Immunological Reviews, vol.271, issue.1, pp.84-98, 2009.
DOI : 10.1111/j.1600-065X.2009.00840.x

R. Lasserre, Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation, The Journal of Cell Biology, vol.195, issue.5, pp.839-853, 2011.
DOI : 10.1038/ni1272

URL : https://hal.archives-ouvertes.fr/pasteur-00646203

L. Sadowski, I. Pilecka, and M. Miaczynska, Signaling from endosomes: Location makes a difference, Experimental Cell Research, vol.315, issue.9, pp.1601-1609, 2009.
DOI : 10.1016/j.yexcr.2008.09.021

I. Yudushkin and R. Vale, Imaging T-cell receptor activation reveals accumulation of tyrosine-phosphorylated CD3?? in the endosomal compartment, Proceedings of the National Academy of Sciences, vol.107, issue.51, pp.22128-22133, 2010.
DOI : 10.1073/pnas.1016388108

S. Campello, R. Lacalle, M. Bettella, S. Manes, L. Scorrano et al., Orchestration of lymphocyte chemotaxis by mitochondrial dynamics, The Journal of Experimental Medicine, vol.274, issue.13, pp.2879-2886, 2006.
DOI : 10.1126/science.1081208

P. Verstreken, C. Ly, K. Venken, T. Koh, Y. Zhou et al., Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions, Neuron, vol.47, issue.3, pp.365-378, 2005.
DOI : 10.1016/j.neuron.2005.06.018

A. Quintana, E. Schwarz, C. Schwindling, P. Lipp, L. Kaestner et al., Sustained Activity of Calcium Release-activated Calcium Channels Requires Translocation of Mitochondria to the Plasma Membrane, Journal of Biological Chemistry, vol.281, issue.52, pp.40302-40309, 2006.
DOI : 10.1074/jbc.M607896200

A. Quintana, T cell activation requires mitochondrial translocation to the immunological synapse, Proceedings of the National Academy of Sciences, vol.104, issue.36, pp.14418-14423, 2007.
DOI : 10.1073/pnas.0703126104

F. Baixauli, The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse, The EMBO Journal, vol.279, issue.7, pp.1238-1250, 2011.
DOI : 10.1038/emboj.2011.25

A. Quintana, Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation, The EMBO Journal, vol.184, issue.19, pp.3895-3912, 2011.
DOI : 10.1038/emboj.2011.289

A. Quintana and M. Hoth, Mitochondrial dynamics and their impact on T cell function, Cell Calcium, vol.52, issue.1, pp.57-63, 2012.
DOI : 10.1016/j.ceca.2012.02.005

C. Schwindling, A. Quintana, E. Krause, and M. Hoth, Mitochondria Positioning Controls Local Calcium Influx in T Cells, The Journal of Immunology, vol.184, issue.1, pp.184-190, 2010.
DOI : 10.4049/jimmunol.0902872

L. Abraham and O. Fackler, HIV-1 Nef: a multifaceted modulator of T cell receptor signaling, Cell Communication and Signaling, vol.10, issue.1, p.39, 2012.
DOI : 10.1128/MCB.24.12.5369-5382.2004

M. Thoulouze, N. Sol-foulon, F. Blanchet, A. Dautry-varsat, O. Schwartz et al., Human Immunodeficiency Virus Type-1 Infection Impairs the Formation of the Immunological Synapse, Immunity, vol.24, issue.5, pp.547-561, 2006.
DOI : 10.1016/j.immuni.2006.02.016

URL : https://hal.archives-ouvertes.fr/pasteur-00137479

S. Das and S. Jameel, Biology of the HIV Nef protein, Indian J Med Res, vol.121, pp.315-332, 2005.

O. Fackler, A. Alcover, and O. Schwartz, Modulation of the immunological synapse: a key to HIV-1 pathogenesis?, Nature Reviews Immunology, vol.15, issue.4, pp.310-317, 2007.
DOI : 10.1038/nri2041

URL : https://hal.archives-ouvertes.fr/hal-00139409

M. Schindler, Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1, Cell, vol.125, issue.6, pp.1055-1067, 2006.
DOI : 10.1016/j.cell.2006.04.033

J. Rudolph, N. Eickel, C. Haller, M. Schindler, and O. Fackler, Inhibition of T-Cell Receptor-Induced Actin Remodeling and Relocalization of Lck Are Evolutionarily Conserved Activities of Lentiviral Nef Proteins, Journal of Virology, vol.83, issue.22, pp.11528-11539, 2009.
DOI : 10.1128/JVI.01423-09

L. Abraham, P. Bankhead, X. Pan, U. Engel, and O. Fackler, HIV-1 Nef Limits Communication between Linker of Activated T Cells and SLP-76 To Reduce Formation of SLP-76-Signaling Microclusters following TCR Stimulation, The Journal of Immunology, vol.189, issue.4, pp.1898-1910, 2012.
DOI : 10.4049/jimmunol.1200652

M. Ott, Immune Hyperactivation of HIV-1-Infected T Cells Mediated by Tat and the CD28 Pathway, Science, vol.275, issue.5305, pp.1481-1485, 1997.
DOI : 10.1126/science.275.5305.1481

A. Simmons, V. Aluvihare, and A. Mcmichael, Nef Triggers a Transcriptional Program in T Cells Imitating Single-Signal T Cell Activation and Inducing HIV Virulence Mediators, Immunity, vol.14, issue.6, pp.763-777, 2001.
DOI : 10.1016/S1074-7613(01)00158-3

D. Fenard, W. Yonemoto, C. De-noronha, M. Cavrois, S. Williams et al., Nef Is Physically Recruited into the Immunological Synapse and Potentiates T Cell Activation Early after TCR Engagement, The Journal of Immunology, vol.175, issue.9, pp.6050-6057, 2005.
DOI : 10.4049/jimmunol.175.9.6050

X. Pan, HIV-1 Nef compensates for disorganization of the immunological synapse by inducing trans-Golgi network-associated Lck signaling, Blood, vol.119, issue.3, pp.786-797, 2012.
DOI : 10.1182/blood-2011-08-373209

C. Haller, The HIV-1 Pathogenicity Factor Nef Interferes with Maturation of Stimulatory T-lymphocyte Contacts by Modulation of N-Wasp Activity, Journal of Biological Chemistry, vol.281, issue.28, pp.19618-19630, 2006.
DOI : 10.1074/jbc.M513802200

C. Haller, S. Rauch, and O. Fackler, HIV-1 Nef Employs Two Distinct Mechanisms to Modulate Lck Subcellular Localization and TCR Induced Actin Remodeling, PLoS ONE, vol.14, issue.11, p.1212, 2007.
DOI : 10.1371/journal.pone.0001212.t001

M. Lehmann, D. Nikolic, and V. Piguet, How HIV-1 Takes Advantage of the Cytoskeleton during Replication and Cell-to-Cell Transmission, Viruses, vol.3, issue.12, pp.1757-1776, 2011.
DOI : 10.3390/v3091757