P. Visscher, M. Brown, M. Mccarthy, and Y. J. , Five Years of GWAS Discovery, The American Journal of Human Genetics, vol.90, issue.1, pp.7-24, 2012.
DOI : 10.1016/j.ajhg.2011.11.029

D. Welter, J. Macarthur, J. Morales, T. Burdett, P. Hall et al., The NHGRI GWAS Catalog, a curated resource of SNP-trait associations, Nucleic Acids Research, vol.42, issue.D1, pp.1001-1006, 2014.
DOI : 10.1093/nar/gkt1229

T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.41, issue.7265, pp.747-53, 2009.
DOI : 10.1038/nature08494

T. Mackay, Epistasis and quantitative traits: using model organisms to study gene???gene interactions, Nature Reviews Genetics, vol.155, issue.1, pp.22-33, 2014.
DOI : 10.1186/gb-2007-8-10-r231

K. Steen, Travelling the world of gene-gene interactions, Briefings in Bioinformatics, vol.13, issue.1, pp.1-19, 2012.
DOI : 10.1093/bib/bbr012

W. Wei, G. Hemani, and C. Haley, Detecting epistasis in human complex traits, Nature Reviews Genetics, vol.460, issue.11, pp.722-755, 2014.
DOI : 10.1186/1471-2105-13-164

S. Purcell, N. B. Todd-brown, K. Thomas, L. Ferreira, M. Bender et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-75, 2007.
DOI : 10.1086/519795

T. Schupbach, I. Xenarios, S. Bergmann, and K. Kapur, FastEpistasis: a high performance computing solution for quantitative trait epistasis, Bioinformatics, vol.26, issue.11, pp.1468-1477, 2010.
DOI : 10.1093/bioinformatics/btq147

G. Hemani, A. Theocharidis, W. Wei, and C. Haley, EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards, Bioinformatics, vol.27, issue.11, pp.1462-1467, 2011.
DOI : 10.1093/bioinformatics/btr172

K. Lange, J. Papp, J. Sinsheimer, R. Sripracha, H. Zhou et al., Mendel: the Swiss army knife of genetic analysis programs, Bioinformatics, vol.29, issue.12, pp.1568-70, 2013.
DOI : 10.1093/bioinformatics/btt187

X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan et al., BOOST: A Fast Approach to Detecting Gene-Gene Interactions in Genome-wide Case-Control Studies, The American Journal of Human Genetics, vol.87, issue.3, pp.325-365, 2010.
DOI : 10.1016/j.ajhg.2010.07.021

T. Kam-thong, D. Czamara, K. Tsuda, K. Borgwardt, C. Lewis et al., EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units, European Journal of Human Genetics, vol.19, issue.4, pp.465-71, 2011.
DOI : 10.1038/cr.2010.68

URL : https://hal.archives-ouvertes.fr/hal-00598939

S. Prabhu and I. Pe-'er, Ultrafast genome-wide scan for SNP-SNP interactions in common complex disease, Genome Research, vol.22, issue.11, pp.2230-2270, 2012.
DOI : 10.1101/gr.137885.112

N. Yi, V. Kaklamani, and B. Pasche, Bayesian Analysis of Genetic Interactions in Case-control Studies, with Application to Adiponectin Genes and Colorectal Cancer Risk, Annals of Human Genetics, vol.169, issue.1, pp.90-104, 2011.
DOI : 10.1111/j.1469-1809.2010.00605.x

Y. Zhang and J. Liu, Bayesian inference of epistatic interactions in case-control studies, Nature Genetics, vol.62, issue.9, pp.1167-73, 2007.
DOI : 10.1038/nrg1522

L. Calle, M. Urrea, V. , V. Steen, and K. Mb-mdr, Model-Based Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic data, 2008.

D. Schwarz, I. Konig, and A. Ziegler, On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data, Bioinformatics, vol.26, issue.14, pp.1752-1760, 2010.
DOI : 10.1093/bioinformatics/btq257

M. Ueki and G. Tamiya, Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis, BMC Bioinformatics, vol.13, issue.1, p.72, 2012.
DOI : 10.1093/biomet/asm053

M. Xie, J. Li, and T. Jiang, Detecting genome-wide epistases based on the clustering of relatively frequent items, Bioinformatics, vol.28, issue.1, pp.5-12, 2012.
DOI : 10.1093/bioinformatics/btr603

W. Piegorsch, C. Weinberg, and J. Taylor, Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies, Statistics in Medicine, vol.134, issue.2, pp.153-62, 1994.
DOI : 10.1002/sim.4780130206

D. Thomas, Gene???environment-wide association studies: emerging approaches, Nature Reviews Genetics, vol.15, issue.4, pp.259-72, 2010.
DOI : 10.1038/nrg2764

T. Vanderweele, S. Hernandez-diaz, and M. Hernan, Case-only gene-environment interaction studies: when does association imply mechanistic interaction?, Genetic Epidemiology, vol.10, issue.4, pp.327-361, 2010.
DOI : 10.1002/gepi.20484

J. Knight, S. Spain, F. Capon, A. Hayday, F. Nestle et al., Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis, Human Molecular Genetics, vol.21, issue.23, pp.5185-92, 2012.
DOI : 10.1093/hmg/dds344

A. Strange, F. Capon, C. Spencer, J. Knight, M. Weale et al., A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1, Nature Genetics, vol.447, issue.11, pp.985-90, 2010.
DOI : 10.1086/319501

V. Chandran, The Genetics of Psoriasis and Psoriatic Arthritis, Clinical Reviews in Allergy & Immunology, vol.58, issue.Supplement, pp.149-56, 2013.
DOI : 10.1007/s12016-012-8303-5

A. Oka, T. Mabuchi, A. Ozawa, and H. Inoko, Current understanding of human genetics and genetic analysis of psoriasis, The Journal of Dermatology, vol.17, issue.Suppl, pp.231-272, 2012.
DOI : 10.1111/j.1346-8138.2012.01504.x

A. Ziegler, I. Konig, and J. Thompson, Biostatistical Aspects of Genome-Wide Association Studies, Biometrical Journal, vol.2, issue.1, pp.8-28, 2008.
DOI : 10.1002/bimj.200710398

M. Ritchie, L. Hahn, and J. Moore, Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity, Genetic Epidemiology, vol.20, issue.2, pp.150-157, 2003.
DOI : 10.1002/gepi.10218

J. Moore, L. Hahn, M. Ritchie, T. Thornton, and B. White, Application of Genetic Algorithms to the Discovery of Complex Models for Simulation Studies in Human Genetics, Proc Genet Evol Comput Conf, pp.1150-1155, 2002.

B. Kernighan and D. Ritchie, The C programming language, 1988.

T. Cattaert, M. Calle, S. Dudek, M. John, J. Van-lishout et al., Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case-control data in the presence of noise, Annals of Human Genetics, vol.70, issue.1, pp.78-89, 2011.
DOI : 10.1111/j.1469-1809.2010.00604.x

H. Cordell, Detecting gene???gene interactions that underlie human diseases, Nature Reviews Genetics, vol.8, issue.6, pp.392-404, 2009.
DOI : 10.1038/nrg2579

B. Goudey, D. Rawlinson, Q. Wang, F. Shi, H. Ferra et al., GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS, BMC Genomics, vol.14, issue.Suppl 3, p.10, 2013.
DOI : 10.1086/519795

E. Riveira-munoz, S. He, G. Escaramis, P. Stuart, U. Huffmeier et al., Meta-Analysis Confirms the LCE3C_LCE3B Deletion as a Risk Factor for Psoriasis in Several Ethnic Groups and Finds Interaction with HLA-Cw6, Journal of Investigative Dermatology, vol.131, issue.5, pp.1105-1114, 2011.
DOI : 10.1038/jid.2010.350

C. Veal, R. Clough, R. Barber, S. Mason, D. Tillman et al., Identification of a novel psoriasis susceptibility locus at 1p and evidence of epistasis between PSORS1 and candidate loci, Journal of Medical Genetics, vol.38, issue.1, pp.7-13, 2001.
DOI : 10.1136/jmg.38.1.7

M. Ueki and H. Cordell, Improved Statistics for Genome-Wide Interaction Analysis, PLoS Genetics, vol.71, issue.4, p.1002625, 2012.
DOI : 10.1371/journal.pgen.1002625.s017

M. John, J. Van-lishout, F. Van-steen, and K. , Model-Based Multifactor Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data, European Journal of Human Genetics, vol.31, issue.6, pp.696-703, 2011.
DOI : 10.1186/1471-2156-7-23

URL : https://hal.archives-ouvertes.fr/hal-00624157

X. Wu, H. Dong, L. Luo, Y. Zhu, G. Peng et al., A Novel Statistic for Genome-Wide Interaction Analysis, PLoS Genetics, vol.95, issue.9, p.1001131, 2010.
DOI : 10.1371/journal.pgen.1001131.s005