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1 Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Paris, France, 2 CNRS, UMR3569, Paris, France, 3 Faculty of

Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon, 4 Institut Pasteur, Unité de Recherche et d’Expertise Epidémiologie des Maladies
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Abstract

Background: Kaposi’s sarcoma associated herpesvirus (KSHV/HHV-8) is the causal agent of all forms of Kaposi sarcoma.
Molecular epidemiology of the variable K1 region identified five major subtypes exhibiting a clear geographical
clustering. The present study is designed to gain new insights into the KSHV epidemiology and genetic diversity in
Cameroon.

Methodology/Principal Findings: Bantu and Pygmy populations from remote rural villages were studied. Antibodies
directed against latent nuclear antigens (LANA) were detected by indirect immunofluorescence using BC3 cells. Peripheral
blood cell DNAs were subjected to a nested PCR amplifying a 737 bp K1 gene fragment. Consensus sequences were
phylogenetically analyzed. We studied 2,063 persons (967 females, 1,096 males, mean age 39 years), either Bantus (1,276) or
Pygmies (787). The Bantu group was older (42 versus 35 years: P,1024). KSHV anti-LANA seroprevalence was of 37.2% (768/
2063), with a significant increase with age (P,1024) but no difference according to sex. Seroprevalence, as well as the anti-
LANA antibodies titres, were higher in Bantus (43.2%) than in Pygmies (27.6%) (P,1024), independently of age. We
generated 29 K1 sequences, comprising 24 Bantus and five Pygmies. These sequences belonged to A5 (24 cases) or B (five
cases) subtypes. They exhibited neither geographical nor ethnic aggregation. A5 strains showed a wide genetic diversity
while the B strains were more homogenous and belonged to the B1 subgroup.

Conclusion: These data demonstrate high KSHV seroprevalence in the two major populations living in Southern and Eastern
Cameroon with presence of mostly genetically diverse A5 but also B K1 subtypes.
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Introduction

Human herpesvirus-8 (HHV-8) or Kaposi’s sarcoma associated

herpesvirus (KSHV) is a Gammaherpesvirus, first identified in a tumor

biopsy from an AIDS-related Kaposi’s sarcoma (KS) [1]. It is

considered as the causing agent of all forms of KS [2,3,4] (epidemic,

iatrogenic, classic and endemic) as well as Primary Effusion

Lymphoma [5,6], and most Multicentric Castleman Diseases [7,8,9].

KSHV global distribution is heterogeneous. Areas of high en-

demicity, corresponding to areas of classic and endemic KS have

been reported [10,11,12,13,14,15]. The epidemiological determi-

nants are quite different depending on the level of endemicity

[3,12,13,14,15,16,17,18,19,20]. Saliva is considered as the main

vector of KSHV infection [13,21,22]. Interestingly, KSHV

infection can be unevenly distributed from one region to another

[14,19,23,24,25,26,27] suggesting non-uniform specificities in

transmission modes [28,29].

Molecular epidemiology studies on KSHV have mainly focused

on the variable K1 region (ORF-K1). This has lead to the

identification of five main viral subtypes (A, B, C, D, E) that exhibit

a geographical clustering [30,31,32,33,34,35,36,37,38,39,40].

There are two highly variable K1 regions (VR1 and VR2), which

encode the areas usually targeted by the immune system on the K1

protein [30,41]. Subgroup A1–4 and subtype C are predominant

among populations of European descent [30,32,36,42,43] and in

some regions of Asia [44,45,46]. Subgroup B1–4 and clade A5 are

predominant in Sub-Saharan Africa [31,34,35,47,48,49,50]. The

present work aimed at gaining new insights into the KSHV

epidemiology and genetic diversity in Cameroon, in Western

Central Africa. Although endemic and epidemic KS are

frequent in Cameroon, KSHV genetic polymorphism is nearly

unknown in this country with only three K1 sequences published

so far [34].
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Methods

Ethics statement
Ethical approval was given in Cameroon by the Ministry of

Public Health in Cameroon: D30-295/AR/MINSANTE/SG/

DROS/CRC/CEA1, the National Comity of Ethics in Camer-

oon: Nu 034/CNE/MP/06. In France by the Comité de

Protection des Personnes (CPP): 2011/01NICB, the Commission

Nationale pour l’Informatique et les Libertés (CNIL): EGY/FLR/

AR111711. Prior to field sampling, community and individual

written informed consent were sought and provided by partici-

pants after detailed information on the study were provided.

Geographic and demographic data
This study was carried out in rural areas of Cameroon (figure 1).

The present study was performed on a large population of Bantus

and Pygmies, living in remote rural villages or settlements of the

rain forest area of South and East Cameroon. Study populations

were sequentially sampled over different time periods. Samples

from the South were mostly collected from 1994 through 2000. A

complementary series was collected from 2006 through 2010.

Samples from the Centre and the East areas were collected from

2004 through 2010. Populations and collection procedures have

been previously described [51,52] and comprise diverse Bantu

groups from the three study areas and two Pygmy groups. The

Baka Pygmies, by far the most important Pygmy group in

Cameroon is found in Eastern and Southern Cameroon. The

Bakolas are the second most important group and have their

settlements exclusively in the Southern part of the country and the

Bedzams are the less numerically important and less accessible.

This group was not included in the current work. A systematic

approach for the enrolment was carried out in all reachable

villages and settlements, scattered alongside roads and tracks

across the forest. A standardized questionnaire was used to collect

personal demographic data. Collected data included the name,

age, sex, location, ethnicity, family links. A 5 to 10 ml whole blood

sample was collected in EDTA K2 vacuum tubes, from all

consenting individuals meeting the inclusion criteria. Plasma and

buffy-coat were obtained 48 to 72 hours after sampling and kept

frozen at 280uC.

A simple clinical examination was performed when requested

by participants in the study. Treatment for common local ailments

was given if available. A transfer to an appropriate medical facility

was advised for severely ill individuals encountered on site.

Ethical approval
The Ministry of Public Health and the National Comity of

Ethics approved the study in Cameroon. In France, approval was

obtained from the ‘‘CPP’’ and the ‘‘CNIL’’. Prior to field

sampling, community and individual written informed consent

were sought and provided by participants after detailed informa-

tion on the study were provided.

KSHV serologic tests
Serologic detection of anti-LANA antibodies was done by

indirect fluorescent assay using KSHV positive and EBV negative

BC3 cell line expressing only Latent-associated Nuclear Antigen as

described, [37,53] using diluted plasma (1:40, 1:80, 1:160)

deposited on BC3 cells. Positivity was considered for presence of

nuclear dotted reactivity at 1:80 dilution.

Statistical methods
Statistical analyses were realized with ‘‘Stata’’ software version

11.1 (Statacorp, Colledge Station, Texas). Between groups

characteristics were compared using the Student t test for

continuous variables and the Fisher exact test for categorical

variables. Adjustment for age was performed using a logistic

regression model for KHSV prevalence, and a linear regression

model for log-transformed titers. Test for trends were used to study

changes of KHSV prevalence or antibody titres over age.

KSHV molecular analysis and phylogenetic analyses
Conditions and procedures for DNA extraction from blood

buffy coats in all positive plasmas on BC3 serological assays, as

well as amplification method have been previously described [37].

Amplified products for 29 samples were directly sequenced and

phylogenetic analyses were conducted.

All new sequences are deposited in GenBank under accession

numbers: JX290272 (O350805), JX290273 (Mezi5), JX290274

(AKO107), JX290275 (Lobak80), JX290276 (Mezi1), JX290277

(Ako381), JX290278 (BAD54), JX290279 (BAD84), JX290280

(BAD230), JX290281 (BAD337), JX290282 (CHAS59), JX290283

(CHAS80), JX290284 (Lobak42), JX290285 (lozi5), JX290286

(Lozi6), JX290287 (MEBAK55), JX290288 (MEZI8), JX290289

(MEZI11), JX290290 (O290107), JX290291 (AKO205),

JX290292 (O300153), JX290293 (O300186), JX290294

(O300189), JX290295 (O300137), JX290296 (O300227),

JX290297 (O300237), JX290298 (O300265), JX290299

(O300275), JX290300 (O323101).

Analysis of recombination events
The recombinant analysis was performed by boot scanning with

the Simplot software v3.5.1 [54].

Nucleotide sequence accession numbers
We deposited all 29 new nucleotide sequences in GenBank

under accession numbers JX290272 to JX290300.

Results

KSHV sero-epidemiology in the studied populations
The current study tested 2063 individuals (967 females, 1096

males) originating from rural areas of the Center, the South and

Author Summary

Kaposi’s sarcoma associated herpesvirus (KSHV/HHV-8) is
the causal agent of one of the most frequent skin tumors
found endemically or epidemically associated to HIV in
Central and Eastern Africa. This highly variable virus tends
to cluster geographically according to specific major
subtypes. Its prevalence is high in that area and increases
with age. Despite its association to all forms of Kaposi
sarcoma and high prevalence described in some low
income populations in Cameroon, KSHV arouses limited
interest, and only few focused previous studies have
looked into prevalence and modes of transmission,
especially in families. Extended molecular epidemiology
is unknown both in healthy individuals and in Kaposi
patients, which led to looking for new insights among
Bantu and Pygmy populations from rural villages in three
regions of Cameroon sharing a quite similar living
environment but yet genetically, socially, and culturally
different. The present study is designed to describe
variations of molecular subtypes in each of these popu-
lation groups regarding their geography in rural areas of
southern, central, and eastern Cameroon.

HHV-8/KSHV in Pygmies and Bantus in Cameroon
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the East regions of Cameroon (table 1). Of note, no Pygmies

populations were studied from the Center area. The mean and

median age for the overall population was 39 years; however, the

mean age of Pygmies was 35.4 years, and it was higher in Bantus

(41.5 years, p,1024) (table 1). The overall KSHV sero-prevalence

in the study was high (37.2%, 768/2063) and significantly

increased with age (p,1024), but was not different according to

sex, (37.6% (413/1096) in males and 36.7% (355/967) in females

(p = 0.68). KSHV prevalence in Bantus (43.2%, 551/1276) and in

Pygmies (27.6%, 217/787) was significantly different (p,1024).

While the KSHV prevalence increased with age among Pygmies

(p = 0.001), the increase was less pronounced among Bantus

(p = 0.04) (figure 2).

Anti-LANA-1 antibody titres were globally high in infected

people and ranged from 80 (1.9 log) to 20,480 (4.3 log) with a

geometric mean value of 2.6 log. Significantly higher anti-LANA-

1 titres were found in infected Bantus compared to infected

Pygmies (geometric means of 2.7 versus 2.4 log, respectively, p,

1025), and this difference was independent of age. In a

multivariate analysis, we observed higher anti-LANA1 titres in

Bantus p,1024 in the South and the East regions compared to the

Center (p,1024).

Overall variability
DNAs extracted from peripheral blood buffy-coats from 461

persons including 56 living in the Center, 190 in the South and

215 in the East were all amplifiable by the b-globin PCR and then

subjected to KSHV K1 PCR. Finally, 29 sequences (29/461 = 6%)

of 730 bp of the K1 gene (ORF-K1) were generated from 18 men

and 11 women (median age = 35 years and range 6–75 years). All

sequences originated from apparently healthy individuals (24

Bantus and 5 Pygmies). Twenty-seven sequences were unique. The

isolates from two couples were found identical. Five of the

sequences were of the B subtype while 24 were of the A5

subgroup. Intratype and intertype polymorphism were observed

among the 29 new K1 sequences. Pairwise comparison of the 27

unique sequences revealed an overall intertype nucleotide

polymorphism of up to 20% and a 37.5% amino acid polymor-

phism. The 22 unique A5 sequences exhibited a 0.2% to 6.9%

nucleotide divergence while the five unique subtype B sequences

showed a 0.3% to 6.6% divergence in their nucleotides

composition.

Phylogenetic analyses
The initial phylogenetic analyses were performed on 633 nt-

long sequences, including the 29 new strains, together with 61 K1

prototype sequences. The analyses were based upon 2 different

phylogenetic methods (neighbor joining and maximum likelihood),

which gave similar phylogenetic topologies. The 5 major K1

molecular subtypes (A, B, C, D, E) were supported by high

bootstrap values in the NJ analysis (figure 3). The 29 new strains

did segregate in the 2 separate groups, previously described as sub-

Saharan taxa. Most of the strains (24/29 = 83%) belonged to the

paraphyletic A5 clade, which contains also the 3 Cameroonian

sequences previously obtained from AIDS-KS [34]. The remain-

ing sequences (5/29 = 17%) clustered with the B1 subgroup, with

sequences originating from Central African Republic, Uganda and

Zimbabwe.

Interestingly, the 29 new sequences exhibited neither geograph-

ical nor ethnic group aggregation. Indeed, 4 out of the 5 strains

originating from Pygmies belonged to the A5 clade. The

proportion was the same for the Bantus strains (20/24 = 83%).

We also performed phylogenetic studies separately on the

sequences encoding the variable regions (VR, 258 nt-long

Figure 1. Geographical distribution of KSHV seroprevalence in studied areas of South Cameroon. Rural study areas are shadowed
orange in the Center, purple in the South and blue in the East. Nature reserves are shown green stripped areas in the East (Dja) and in the South
(Campo). Grey shadowed ellipses show general regional ethnic KSHV prevalence which is higher among Bantus than Pygmies.
doi:10.1371/journal.pntd.0002851.g001

HHV-8/KSHV in Pygmies and Bantus in Cameroon
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sequences), which are the major target of the immune system

[30,41] and the rest of the sequence, that is less susceptible to the

immune system as an evolutionary driving force (375 nt). With

both subsets, the 5 major subtypes could be defined (figure 4). We

confirmed that the 29 new K1 sequences did segregate in 2 groups:

one belonging to the A subtype and the other one to the B subtype.

Of note, the definition of the A1–4 monophyletic group was

possible when analyzing the VR regions: a high boostrap value

was found at the root of the group. Interestingly, such a group was

not distinguishable when considering the rest of the sequence: one

could not differentiate the strains from this clade from sequences of

the A5 group.

Discussion

Cameroon is a Central African country where KSHV and KS

are highly prevalent [14,19,49,55,56,57]. However, the previous

works were focused on specific populations/regions, restricted only

to sero-epidemiology and performed on relatively small sample

[19,55,56,57]. In contrast, in our study, performed on more than

2000 individuals, we have included the two major and very

different populations living in rural South Cameroon: the Bantus

and the Pygmies. Moreover, we have also performed a molecular

epidemiological work aimed at studying the genetic diversity of

KSHV strains in these populations of different origins [58].

Sero-epidemiology
The present epidemiological report shows a very high KSHV

seroprevalence in the two rural populations studied. This confirms

previous findings on a smaller population of rural Bantus from

South Cameroon [19] and extends it to Bantus living in other

areas, as well as, for the first time to the remote Pygmy

populations.

Furthermore, our study demonstrated that KSHV is highly

prevalent in children. This is consistent with a non-sexual

acquisition of the virus. Indeed, in highly endemic population of

African origin, studies have demonstrated a high level of familial

aggregation, with transmission between children of the same

family and from mother to child [19,20]. In central, and mostly

East Africa, endemic KS can also occur in young children. We

previously hypothesized that this peculiar KS form may be related

to an early and massive KSHV infection in genetically susceptible

individuals [14]. In some classical KS in children, diverse genetic

defects have been reported [59,60,61]. Similar studies need to be

performed in children suffering from endemic KS in central

Africa.

We found that KSHV prevalence was similar in men and

women in both groups and increased with age, especially in Pygmy

groups. This is comparable to the data found on rural general

populations of central and East Africa [14,19,49,55,57,62]. While

in African population, non-sexual transmission of KSHV is

considered as the major mode of viral acquisition, sexual

transmission is likely to contribute to further viral spread in adults

[3,13,63]. However, this feature appears to greatly differ to that of

industrialized/occidental countries where most of the infection

seems to be acquired after adolescence, especially in high-risk

groups [3,63,64].

KSHV seroprevalence was quite surprisingly found higher in

Bantus than in Pygmies. Indeed, we expected a higher prevalence

in Pygmies as they have a lower ‘‘living standard’’ than the

surroundings Bantus. As demonstrated for EBV, studies have

indeed suggested that KSHV prevalence, in Africa, may also be

related to the socio-economic level of the studied populations

[65,66]. Furthermore, other works show that populations that kept

a traditional way of life show high prevalence for KSHV

[13,33,67]. However, other studies are necessary to appreciate

the different items (environmental co-factors, specificities in ways

of life influencing transmission modes, or even genetic features),

which can lead to the apparent differences found here between

Pygmies and Bantus.

Our present sero-epidemiological report was based on anti-

LANA-1 antibodies detection while several of the performed

studies in Africa used assays detecting anti-lytic antibodies. While

both assays perform very well in epidemiological studies, the latter

are generally considered less specific than the anti-latent ones

[3,13,68,69]. This implies that seroprevalences are frequently

lower in studies using anti-latent assays [69,70,71,72]. This is well

illustrated by a work performed in 292 persons from a North

Cameroon hospital using anti-latent or anti-lytic immunofluores-

cence assays (IFA). While the anti-lytic IFA prevalence was 51%

with a clear increase with age, the anti-latent IFA prevalence was

of 25% without any increase with age [55].

Figure 2. KSHV Seroprevalence in Bantus and Pygmies by immunofluorescent assay. The Immunofluorescent detection assay on BC3 cells
considered a 1:80 positivity threshold for anti-LANA-1 antibodies. The graph displays the prevalence (Y axis) according to age categories (X axis). A
significant increase with age has been observed in Pygmies (dark green) but less visible in Bantus (light grey).
doi:10.1371/journal.pntd.0002851.g002
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Our study may have some limitations. HHV-8 between-group

prevalence difference is generalized and assumed to Bantus and

Bedzams in the Centre area despite no data were available from

the Bedzam Pygmies.

Molecular epidemiology and possible origins of the A5
clade

We have shown here that the 29 obtained KSHV K1 sequences

(5 from Pygmies and 24 from Bantus) are all sub-Saharan A5 or B

variants. In our report, we did not observe any specific

geographical or ethnical subtype or subgroup segregation. Both

Bantus and Pygmies were represented in A5, and B1 subgroups

that appear to be distributed throughout the studied areas. This

suggests an ancient origin of these strains in these areas and a

genetic exchange between both populations. Of note, the

prevalence of A5 sequences in our study is higher than prevalence

observed in Zimbabwe (45% of 64 KS patients) [50], in Uganda

(53% of 31 KS patients) [73], in West and other Central African

countries (8 of 21 KS patients) [34].

Interestingly, the B monophyletic group is, so far, composed

exclusively of sequences isolated from individuals with African

origins, suggesting a geographical isolation of the infected

Figure 3. Phylogenetic relationships between the 27 unique new KSHV/HHV-8 sequences. The phylogenetic tree includes the 29 new
633 bp KSHV K1 consensus sequences and worldwide A to E sub-types prototypes from healthy persons and KS patients. Amplification was done
with primers K1AG75s: GACCTTGTTGGACATCCCGTACAATC, K1AG1200as: AGGCCATGCTGTAAGTAGCACGGTT for the outter fragment and VR1s:
ATCCTTGCCAAYATCCTGGTATTGBAA and VR2 as1: AGTACCAMTCCACTGGTTGYGTAT for the inner fragment. Amplified products for 29 samples were
directly sequenced. Once the sequences obtained, a multiple sequence alignment was performed with the DAMBE program (v.4.2.13) on the basis of
a previous amino acid alignment created from the original sequences. The final alignment was submitted to the Modeltest program (v.3.6) to select
the best evolutionary model, according to the Akaike Information Criterion, to apply for the phylogenetic analyses. The phylogeny was derived by
both the neighbor-joining (NJ) and maximum parsimony (MP) method, performed in the PAUP program (v.4.0b10) (Sinauer Associates, Sunderland,
MA, USA) and the reliability of the inferred tree was evaluated by bootstrap analysis on 1000 replicates. New A5 sequences are shown in bulk red and
B sequences are in bulk blue. The tree is drawn to scale with 0.1 nucleotide replacements per site.
doi:10.1371/journal.pntd.0002851.g003

Figure 4. Phylogenetic analyses between the colinearized encoding variable region VR1 and VR2 fragments (258 nt) on panel A
versus the rest of the sequence (375 nt) on panel B of the 29 new KSHV/HHV-8 strains from Cameroon with 22 representative KSHV/
HHV-8 strains from A/C subtypes. Panel A shows the results from the 258 nt-long sequences for the highly variable regions VR1 and VR2. Panel B
shows the results for the 375 nt-long sequence from the rest of the sequence that is less susceptible to the immune system as an evolutionary driving
force.
doi:10.1371/journal.pntd.0002851.g004
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populations and an ancient speciation. In contrast, the African

sequences from the A5 paraphyletic group are closely related to

viruses found mostly in populations, which form the A1–4

subgroup. The origin of the A5 group is thus quite intriguing.

We first envisioned that the A5 clade could have emerged upon

recombination, and would therefore form an intermediate group.

However, by Simplot analysis, we found no evidence for such a

genetic event. Therefore, we speculate that the divergence between

the A1–4 and A5 groups rose from natural genetic drift and

speciation. It would have been very interesting to date the separation

of the viral populations. Unfortunately, the molecular clock analysis

we performed was not conclusive. Indeed, to perform such study,

one would like to focus on segments that have comparable mutation

rates. Usually, when considering coding regions, we focus on the

divergence of the 3rd nucleotide codon. Considering this limitation,

the sequence we considered was too short, not informative enough.

Thus, we studied separately the two VR genetic regions, which

are the major targets of the immune system on K1, and the rest of

the sequence. When considering the VR genetic regions, the A5

and A1–4 subgroups were still defined. In contrast, these groups

were undistinguishable when considering the rest of the sequence.

These data suggest that the separation between the 2 groups is not

ancient enough to have accumulated mutation through genetic

drift on the entire sequence; the separation between the A1–4 and

A5 groups is thus, probably, more recent than the emergence of

the C or B subgroups. This conclusion was previously suggested.

Indeed, White et al. have shown that viral strains from the B

subtype have accumulated more non-synonymous mutations when

compared to strains from the A5 group, which they interpreted as

the hallmarks of an older divergence of the B subtype [50]. This

conclusion is strengthened by the fact that non-synonymous

mutations were observed throughout the B strains sequences,

while they were limited to the VR regions for the A5 clade. This

suggests that the immune pressure for the 2 groups could have

been different. The difference between the A1–4 and A5 group is

suspected to be mainly shaped upon immune pressure on the VR

regions. As for the origins of the A5 group, we hypothesize that the

A group has African origins and upon immune selection (maybe

associated with specific HLA) a monophyletic A1–4 group has

emerged, mostly in Caucasian populations, but also described in

individuals of African origin [30]. The remaining sequences would

then form the A5 clade.

Cameroon is a good candidate for further phylo-geographic

studies of KSHV subtype distribution and polymorphism as the

country is inhabited by a multitude of ethnic groups of divergent

historical origins.
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Développement (IRD), the Centre Pasteur du Cameroun for their

assistance and collaboration and all the participants to the study.

Author Contributions

Conceived and designed the experiments: EB OC AG. Performed the

experiments: EB OC. Analyzed the data: EB OC PVA AFo. Contributed

reagents/materials/analysis tools: EB AFr AFo. Wrote the paper: EB OC

PVA AG.

References

1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. (1994)
Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s

sarcoma. Science 266: 1865–1869.

2. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, et al. (1995)

Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells.
Nat Med 1: 1274–1278.

3. Uldrick TS, Whitby D (2011) Update on KSHV epidemiology, Kaposi Sarcoma
pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 305: 150–162.

4. Whitby D, Howard MR, Tenant-Flowers M, Brink NS, Copas A, et al. (1995)
Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-

infected individuals and progression to Kaposi’s sarcoma. Lancet 346: 799–802.

5. Carbone A, Gaidano G (1997) HHV-8-positive body-cavity-based lymphoma: a

novel lymphoma entity. Br J Haematol 97: 515–522.

6. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, et al. (1996)
Primary effusion lymphoma: a distinct clinicopathologic entity associated with

the Kaposi’s sarcoma-associated herpes virus. Blood 88: 645–656.

7. Gessain A, Sudaka A, Briere J, Fouchard N, Nicola MA, et al. (1996) Kaposi

sarcoma-associated herpes-like virus (human herpesvirus type 8) DNA sequences
in multicentric Castleman’s disease: is there any relevant association in non-

human immunodeficiency virus-infected patients? Blood 87: 414–416.

8. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, et al. (1995)

Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric
Castleman’s disease. Blood 86: 1276–1280.

9. Chadburn A, Hyjek E, Mathew S, Cesarman E, Said J, et al. (2004) KSHV-
positive solid lymphomas represent an extra-cavitary variant of primary effusion

lymphoma. Am J Surg Pathol 28: 1401–1416.

10. Beral V (1991) Epidemiology of Kaposi’s sarcoma. Cancer Surv 10: 5–22.

11. Boshoff C, Weiss RA (2001) Epidemiology and pathogenesis of Kaposi’s

sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 356: 517–
534.

12. de-The G, Bestetti G, van Beveren M, Gessain A (1999) Prevalence of human
herpesvirus 8 infection before the acquired immunodeficiency disease syndrome-

related epidemic of Kaposi’s sarcoma in East Africa. J Natl Cancer Inst 91:
1888–1889.

13. Dukers NH, Rezza G (2003) Human herpesvirus 8 epidemiology: what we do
and do not know. AIDS 17: 1717–1730.

14. Gessain A, Mauclere P, van Beveren M, Plancoulaine S, Ayouba A, et al. (1999)

Human herpesvirus 8 primary infection occurs during childhood in Cameroon,

Central Africa. Int J Cancer 81: 189–192.

15. Hengge UR, Ruzicka T, Tyring SK, Stuschke M, Roggendorf M, et al. (2002)
Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 1:

epidemiology, environmental predispositions, clinical manifestations, and

therapy. Lancet Infect Dis 2: 281–292.

16. Cannon MJ, Laney AS, Pellett PE (2003) Human herpesvirus 8: current issues.

Clin Infect Dis 37: 82–87.

17. Pica F, Volpi A (2007) Transmission of human herpesvirus 8: an update. Curr
Opin Infect Dis 20: 152–156.

18. Olsen SJ, Chang Y, Moore PS, Biggar RJ, Melbye M (1998) Increasing Kaposi’s
sarcoma-associated herpesvirus seroprevalence with age in a highly Kaposi’s

sarcoma endemic region, Zambia in 1985. AIDS 12: 1921–1925.

19. Plancoulaine S, Abel L, Tregouet D, Duprez R, van Beveren M, et al. (2004)
Respective roles of serological status and blood specific antihuman herpesvirus 8

antibody levels in human herpesvirus 8 intrafamilial transmission in a highly

endemic area. Cancer Res 64: 8782–8787.

20. Plancoulaine S, Abel L, van Beveren M, Tregouet DA, Joubert M, et al. (2000)

Human herpesvirus 8 transmission from mother to child and between siblings in

an endemic population. Lancet 356: 1062–1065.

21. Pauk J, Huang ML, Brodie SJ, Wald A, Koelle DM, et al. (2000) Mucosal

shedding of human herpesvirus 8 in men. N Engl J Med 343: 1369–1377.

22. Mbulaiteye SM, Pfeiffer RM, Engels EA, Marshall V, Bakaki PM, et al. (2004)

Detection of kaposi sarcoma-associated herpesvirus DNA in saliva and buffy-

coat samples from children with sickle cell disease in Uganda. J Infect Dis 190:
1382–1386.

23. Andreoni M, El-Sawaf G, Rezza G, Ensoli B, Nicastri E, et al. (1999) High

seroprevalence of antibodies to human herpesvirus-8 in Egyptian children:
evidence of nonsexual transmission. J Natl Cancer Inst 91: 465–469.

24. Ariyoshi K, Schim van der Loeff M, Cook P, Whitby D, Corrah T, et al. (1998)

Kaposi’s sarcoma in the Gambia, West Africa is less frequent in human
immunodeficiency virus type 2 than in human immunodeficiency virus type 1

infection despite a high prevalence of human herpesvirus 8. J Hum Virol 1: 193–
199.

25. Cook-Mozaffari P, Newton R, Beral V, Burkitt DP (1998) The geographical

distribution of Kaposi’s sarcoma and of lymphomas in Africa before the AIDS
epidemic. Br J Cancer 78: 1521–1528.

26. Dedicoat M, Newton R (2003) Review of the distribution of Kaposi’s sarcoma-

associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s
sarcoma. Br J Cancer 88: 1–3.

27. Mayama S, Cuevas LE, Sheldon J, Omar OH, Smith DH, et al. (1998)

Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human
herpesvirus 8) in Ugandan children and adolescents. Int J Cancer 77: 817–820.

28. Dollard SC, Butler LM, Jones AM, Mermin JH, Chidzonga M, et al. (2010)
Substantial regional differences in human herpesvirus 8 seroprevalence in sub-

HHV-8/KSHV in Pygmies and Bantus in Cameroon

PLOS Neglected Tropical Diseases | www.plosntds.org 8 May 2014 | Volume 8 | Issue 5 | e2851



Saharan Africa: insights on the origin of the ‘‘Kaposi’s sarcoma belt’’.

Int J Cancer 127: 2395–2401.
29. Butler LM, Dorsey G, Hladik W, Rosenthal PJ, Brander C, et al. (2009) Kaposi

sarcoma-associated herpesvirus (KSHV) seroprevalence in population-based

samples of African children: evidence for at least 2 patterns of KSHV
transmission. J Infect Dis 200: 430–438.

30. Cook PM, Whitby D, Calabro ML, Luppi M, Kakoola DN, et al. (1999)
Variability and evolution of Kaposi’s sarcoma-associated herpesvirus in Europe

and Africa. International Collaborative Group. AIDS 13: 1165–1176.

31. Kakoola DN, Sheldon J, Byabazaire N, Bowden RJ, Katongole-Mbidde E, et al.
(2001) Recombination in human herpesvirus-8 strains from Uganda and

evolution of the K15 gene. J Gen Virol 82: 2393–2404.
32. Kasolo FC, Monze M, Obel N, Anderson RA, French C, et al. (1998) Sequence

analyses of human herpesvirus-8 strains from both African human immunode-
ficiency virus-negative and -positive childhood endemic Kaposi’s sarcoma show

a close relationship with strains identified in febrile children and high variation

in the K1 glycoprotein. J Gen Virol 79 (Pt 12): 3055–3065.
33. Kazanji M, Dussart P, Duprez R, Tortevoye P, Pouliquen JF, et al. (2005)

Serological and molecular evidence that human herpesvirus 8 is endemic among
Amerindians in French Guiana. J Infect Dis 192: 1525–1529.

34. Lacoste V, Judde JG, Briere J, Tulliez M, Garin B, et al. (2000) Molecular

epidemiology of human herpesvirus 8 in africa: both B and A5 K1 genotypes, as
well as the M and P genotypes of K14.1/K15 loci, are frequent and widespread.

Virology 278: 60–74.
35. Whitby D, Marshall VA, Bagni RK, Wang CD, Gamache CJ, et al. (2004)

Genotypic characterization of Kaposi’s sarcoma-associated herpesvirus in
asymptomatic infected subjects from isolated populations. J Gen Virol 85:

155–163.

36. Zong JC, Ciufo DM, Alcendor DJ, Wan X, Nicholas J, et al. (1999) High-level
variability in the ORF-K1 membrane protein gene at the left end of the Kaposi’s

sarcoma-associated herpesvirus genome defines four major virus subtypes and
multiple variants or clades in different human populations. J Virol 73: 4156–

4170.

37. Cassar O, Afonso PV, Bassot S, Plancoulaine S, Duprez R, et al. (2007) Novel
human herpesvirus 8 subtype D strains in Vanuatu, Melanesia. Emerg Infect Dis

13: 1745–1748.
38. Duprez R, Cassar O, Hbid O, Rougier Y, Morisse L, et al. (2006) Cutaneous

disseminated endemic Kaposi’s sarcoma in a Polynesian man infected with a
new divergent human herpesvirus 8 subtype D. J Clin Virol 37: 222–226.

39. Meng YX, Sata T, Stamey FR, Voevodin A, Katano H, et al. (2001) Molecular

characterization of strains of Human herpesvirus 8 from Japan, Argentina and
Kuwait. J Gen Virol 82: 499–506.

40. Cassar O, Blondot ML, Mohanna S, Jouvion G, Bravo F, et al. (2010) Human
herpesvirus 8 genotype E in patients with Kaposi sarcoma, Peru. Emerg Infect

Dis 16: 1459–1462.

41. Stebbing J, Bourboulia D, Johnson M, Henderson S, Williams I, et al. (2003)
Kaposi’s sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and

target Darwinian positively selected autologous K1 epitopes. J Virol 77: 4306–
4314.

42. Duprez R, Hbid O, Afonso P, Quach H, Belloul L, et al. (2006) Molecular
epidemiology of the HHV-8 K1 gene from Moroccan patients with Kaposi’s

sarcoma. Virology 353: 121–132.

43. Zhang YJ, Davis TL, Wang XP, Deng JH, Baillargeon J, et al. (2001) Distinct
distribution of rare US genotypes of Kaposi’s sarcoma-associated herpesvirus

(KSHV) in South Texas: implications for KSHV epidemiology. J Infect Dis 183:
125–129.

44. Cassar O, Bassot S, Plancoulaine S, Quintana-Murci L, Harmant C, et al. (2010)

Human herpesvirus 8, Southern Siberia. Emerg Infect Dis 16: 580–582.
45. Kamiyama K, Kinjo T, Chinen K, Iwamasa T, Uezato H, et al. (2004) Human

herpesvirus 8 (HHV8) sequence variations in HHV8 related tumours in
Okinawa, a subtropical island in southern Japan. J Clin Pathol 57: 529–535.

46. Zhang D, Pu X, Wu W, Jin Y, Juhear M, et al. (2008) Genotypic analysis on the

ORF-K1 gene of human herpesvirus 8 from patients with Kaposi’s sarcoma in
Xinjiang, China. J Genet Genomics 35: 657–663.

47. Fouchard N, Lacoste V, Couppie P, Develoux M, Mauclere P, et al. (2000)
Detection and genetic polymorphism of human herpes virus type 8 in endemic

or epidemic Kaposi’s sarcoma from West and Central Africa, and South
America. Int J Cancer 85: 166–170.

48. Kasolo FC, Spinks J, Bima H, Bates M, Gompels UA (2007) Diverse genotypes

of Kaposi’s sarcoma associated herpesvirus (KSHV) identified in infant blood
infections in African childhood-KS and HIV/AIDS endemic region. J Med

Virol 79: 1555–1561.
49. Tornesello ML, Biryahwaho B, Downing R, Hatzakis A, Alessi E, et al. (2010)

Human herpesvirus type 8 variants circulating in Europe, Africa and North

America in classic, endemic and epidemic Kaposi’s sarcoma lesions during pre-
AIDS and AIDS era. Virology 398: 280–289.

50. White T, Hagen M, Gudza I, White IE, Ndemera B, et al. (2008) Genetic

diversity of the Kaposi’s sarcoma herpesvirus K1 protein in AIDS-KS in
Zimbabwe. J Clin Virol 42: 165–171.

51. Betsem E, Rua R, Tortevoye P, Froment A, Gessain A (2011) Frequent and

Recent Human Acquisition of Simian Foamy Viruses Through Apes’ Bites in
Central Africa. PLoS Pathog 7: e1002306.

52. Filippone C, Bassot S, Betsem E, Tortevoye P, Guillotte M, et al. (2012) A new
and frequent human T-cell leukemia virus indeterminate Western blot pattern:

epidemiological determinants and PCR results in central African inhabitants.
J Clin Microbiol 50: 1663–1672.

53. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s

sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-
cavity-based lymphomas. N Engl J Med 332: 1186–1191.

54. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, et al. (1999)
Full-length human immunodeficiency virus type 1 genomes from subtype C-

infected seroconverters in India, with evidence of intersubtype recombination.

J Virol 73: 152–160.

55. Rezza G, Tchangmena OB, Andreoni M, Bugarini R, Toma L, et al. (2000)

Prevalence and risk factors for human herpesvirus 8 infection in northern
Cameroon. Sex Transm Dis 27: 159–164.

56. Serraino D, Toma L, Andreoni M, Butto S, Tchangmena O, et al. (2001) A
seroprevalence study of human herpesvirus type 8 (HHV8) in eastern and

Central Africa and in the Mediterranean area. Eur J Epidemiol 17: 871–876.

57. Volpi A, Sarmati L, Suligoi B, Montano M, Rezza G, et al. (2004) Correlates of
human herpes virus-8 and herpes simplex virus type 2 infections in Northern

Cameroon. J Med Virol 74: 467–472.

58. Patin E, Laval G, Barreiro LB, Salas A, Semino O, et al. (2009) Inferring the

demographic history of African farmers and pygmy hunter-gatherers using a
multilocus resequencing data set. PLoS Genet 5: e1000448.

59. Camcioglu Y, Picard C, Lacoste V, Dupuis S, Akcakaya N, et al. (2004) HHV-8-

associated Kaposi sarcoma in a child with IFNgammaR1 deficiency. J Pediatr
144: 519–523.

60. Picard C, Mellouli F, Duprez R, Chedeville G, Neven B, et al. (2006) Kaposi’s
sarcoma in a child with Wiskott-Aldrich syndrome. Eur J Pediatr 165: 453–457.

61. Sahin G, Palanduz A, Aydogan G, Cassar O, Ertem AU, et al. (2010) Classic
Kaposi sarcoma in 3 unrelated Turkish children born to consanguineous

kindreds. Pediatrics 125: e704–708.

62. Mbulaiteye SM, Biggar RJ, Pfeiffer RM, Bakaki PM, Gamache C, et al. (2005)
Water, socioeconomic factors, and human herpesvirus 8 infection in Ugandan

children and their mothers. J Acquir Immune Defic Syndr 38: 474–479.

63. Martin JN, Ganem DE, Osmond DH, Page-Shafer KA, Macrae D, et al. (1998)

Sexual transmission and the natural history of human herpesvirus 8 infection.

N Engl J Med 338: 948–954.

64. Smith NA, Sabin CA, Gopal R, Bourboulia D, Labbet W, et al. (1999) Serologic

evidence of human herpesvirus 8 transmission by homosexual but not
heterosexual sex. J Infect Dis 180: 600–606.

65. Wojcicki JM, Newton R, Urban M, Stein L, Hale M, et al. (2004) Low
socioeconomic status and risk for infection with human herpesvirus 8 among

HIV-1 negative, South African black cancer patients. Epidemiol Infect 132:

1191–1197.

66. Ziegler JL, Newton R, Katongole-Mbidde E, Mbulataiye S, De Cock K, et al.

(1997) Risk factors for Kaposi’s sarcoma in HIV-positive subjects in Uganda.
AIDS 11: 1619–1626.

67. Rezza G, Danaya RT, Wagner TM, Sarmati L, Owen IL, et al. (2001) Human
herpesvirus-8 and other viral infections, Papua New Guinea. Emerg Infect Dis 7:

893–895.

68. Corchero JL, Mar EC, Spira TJ, Pellett PE, Inoue N (2001) Comparison of
serologic assays for detection of antibodies against human herpesvirus 8. Clin

Diagn Lab Immunol 8: 913–921.

69. Hudnall SD, Chen T, Rady P, Tyring S, Allison P (2003) Human herpesvirus 8

seroprevalence and viral load in healthy adult blood donors. Transfusion 43: 85–

90.

70. Enbom M, Sheldon J, Lennette E, Schulz T, Ablashi DV, et al. (2000)

Antibodies to human herpesvirus 8 latent and lytic antigens in blood donors and
potential high-risk groups in Sweden: variable frequencies found in a multicenter

serological study. J Med Virol 62: 498–504.

71. Pellett PE, Wright DJ, Engels EA, Ablashi DV, Dollard SC, et al. (2003)

Multicenter comparison of serologic assays and estimation of human herpesvirus

8 seroprevalence among US blood donors. Transfusion 43: 1260–1268.

72. Plancoulaine S, Abel L, van Beveren M, Gessain A (2002) High titers of anti-

human herpesvirus 8 antibodies in elderly males in an endemic population. J Natl
Cancer Inst 94: 1333–1335.

73. Kajumbula H, Wallace RG, Zong JC, Hokello J, Sussman N, et al. (2006)
Ugandan Kaposi’s sarcoma-associated herpesvirus phylogeny: evidence for

cross-ethnic transmission of viral subtypes. Intervirology 49: 133–143.

HHV-8/KSHV in Pygmies and Bantus in Cameroon

PLOS Neglected Tropical Diseases | www.plosntds.org 9 May 2014 | Volume 8 | Issue 5 | e2851


