Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB.
François Wasels, Marc Monot, Patrizia Spigaglia, Fabrizio Barbanti, Laurence Ma, Christiane Bouchier, Bruno Dupuy, Paola Mastrantonio

To cite this version:
François Wasels, Marc Monot, Patrizia Spigaglia, Fabrizio Barbanti, Laurence Ma, et al.. Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB.. Microbial Drug Resistance, Mary Ann Liebert, 2014, 20 (6), pp.555-60. 10.1089/mdr.2014.0015 . pasteur-01370763
Inter and intra-species transfer of a *Clostridium difficile* conjugative transposon conferring resistance to MLS$_B$

François WASELS1, Marc MONOT2, Patrizia SPIGAGLIA1, Fabrizio BARBANTI1, Laurence MA3, Christiane BOUCHIER3, Bruno DUPUY2, Paola MASTRANTONIO1

1Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy

2Pathogenesis of Bacterial Anaerobes Laboratory, Institut Pasteur, 75724, Paris, France

3Genomic Platform, Institut Pasteur, 75724, Paris, France

Correspondance

Mailing address: Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

Phone: 39 06 4990 2335

Fax: 39 06 49387112

E-mail: paola.mastrantonio@iss.it

E-mail: patrizia.spigaglia@iss.it

Running title: Characterisation of a Tn6194-like transposon

Keywords: *Clostridium difficile*, *erm*(B), MLS$_B$, conjugative transposon
ABSTRACT
Resistance to MLS\textsubscript{B} in Clostridium difficile is generally due to \textit{erm}(B) genes. Tn6194, a conjugative transposon initially detected in PCR-ribotype 027 isolates is an \textit{erm}(B)-containing element also detected in other relevant Clostridium difficile PCR-ribotypes. In this study, the genome of a \textit{C. difficile} PCR-ribotype 001 strain was sequenced and an element with two nucleotidic changes compared to Tn6194 was detected. This element was transferred by filter-mating assays to recipient strains of \textit{C. difficile} belonging to PCR-ribotype 009 and 027, and to a recipient strain of \textit{Enterococcus faecalis}. Transconjugants were characterised by Southern blotting and genome sequencing, and integration sites in all transconjugants were identified by sspPCR. The element integrated the genome of \textit{C. difficile} at different sites and the genome of \textit{E. faecalis} at a unique site. This study is the first molecular characterisation of a \textit{erm}(B)-containing conjugative transposon in \textit{C. difficile}, and provide an additional evidence of the antibiotic resistance’s transmission risk between pathogenic bacteria occupying the same human intestinal niche.
Resistance to the macrolide-lincosamide-streptogramin B (MLS_B) group of antibiotics is the most common phenotype in clinical isolates of *C. difficile* worldwide, and is generally conferred by *erm*(B) genes encoding 23S rRNA methylases (Huang et al., 2009). These genes are located on mobile elements showing an important heterogeneity in their genetic organisation (Farrow et al., 2001; Spigaglia et al., 2005; Spigaglia et al., 2011). The best known of them is Tn5398 from *C. difficile* 630, a mobilizable non-conjugative element containing two *erm*(B) copies (Farrow et al., 2001).

A putative conjugative transposon belonging to the Tn916-like family of transposons and carrying an *erm*(B) gene has been recently detected in *C. difficile* 2007855, a strain belonging to the hyper-virulent PCR-ribotype 027, and designated Tn6194 (He et al., 2010; He et al., 2012). Conjugative transposons related to Tn916 were originally detected in Enterococcus faecalis, which inhabits the same niche of *C. difficile*. Both species are responsible for nosocomial infections, and horizontal gene transfer between those two species has been previously proven (Jasni et al., 2010).

A recent whole-genome sequencing analysis of *C. difficile* 027/BI/NAP1 isolates demonstrated that Tn6194 was present in most of the strains belonging to the FQR1 lineage, isolated in the United States and in Asia (He et al., 2012). Moreover, recent studies showed that this transposon is the most frequently found *erm*(B)-containing element in different epidemic PCR-ribotypes circulating in European hospitals (Spigaglia et al., 2011; Wasels et al., 2013), and a transposon almost identical has been detected in the PCR-ribotype 017 strain M68 genome (Brouwer et al., 2012).

In this study, we characterized the element of a *C. difficile* PCR-ribotype 001 clinical isolate and we investigated its intra and inter-species transfer capacities by transferring it to recipient strains of *C. difficile* and *E. faecalis*.
MATERIALS AND METHODS

Bacterial strains, culture conditions and antibiotic susceptibility

All strains used in this study, listed in Table 1, were grown on Brain Heart Infusion (BHI) agar plates or in BHI broth (Oxoid Ltd, Basingstoke, UK) supplemented with 0.5% yeast extract and 0.1% L-cysteine (BHIS). C. difficile was grown at 35°C in anaerobic conditions (85% N₂, 10% H₂, 5% CO₂) and E. faecalis at 37°C in aerobic conditions. Erythromycin and rifampicin were used at a final concentration of 20 mg/L.

Minimal Inhibitory Concentrations (MICs) were determined using the Etest (AB Biodisk, Solna, Sweden) as already described. The breakpoint used for both erythromycin and clindamycin was 8 mg/L, in accordance with the guidelines established by the Clinical and Laboratory Standards Institute (CLSI, 2007). The breakpoint for rifampicin was 4 mg/L, in accordance with the CLSI interpretive categories approved for Staphylococcus aureus, since no values are provided for anaerobes (CLSI, 2008).

Filter-mating assays

Filter-mating experiments were performed as already described (Farrow et al., 2001). C. difficile transconjugants were selected anaerobically on plates supplemented with erythromycin and rifampicin, and were confirmed by PCR-ribotyping as already described (Bidet et al., 2009) and PCR detection of erm(B) using primers E5 and E6 (Spigaglia & Mastrantonio, 2004). E. faecalis transconjugants were selected aerobically on plates supplemented with erythromycin, and confirmed by PCR detection of erm(B).

Genomic DNA extraction

Genomic DNA extractions were performed using the NucleoBond® AXG columns and NucleoBond® Buffer Set III (Macherey-Nagel) according to the manufacturer's
instructions, with the following modifications: double volume of lysozyme and proteinase K were used during the cell disruption step and incubation time at 37°C was tripled.

Analysis of *C. difficile* CII7 transposon insertion sites

Southern blotting was carried out by transferring 3 µg of *Hind*III-digested genomic DNA from *C. difficile* strains to a Hybond™ N+ membrane (Amersham Biosciences, Buckinghamshire, UK). The *erm*(B)-specific probe was obtained by PCR using primers E5 and E6. Hybridisation and signal detection were carried out as described in the ECL™ Direct Nucleic Acid Labelling and Detection System (Amersham Biosciences).

SspPCR were performed using primers listed in the Supplementary Table 1 on fragments of genomic DNA digested by *Hind*III, *Sau*3AI or *Nde*I genomic fragments ligated within the dephosphorylated pUC19 digested with *Hind*III, *Bam*HI or *Nde*I. Primers used to confirm insertion sites by PCR are listed in the Supplementary Table 2.

Genome sequencing

Single-end multiplex libraries were created with multiplexed protocol according to the manufacturer’s specification; the sequencing was performed on the Illumina HiSeq 2000 platform. The read length was 110-bp for both *C. difficile* CII7 and *C. difficile* CII7xCD37(A). Then reads were assembled de novo into contigs using Velvet (Zerbino & Birney, 2008) (Options: Kmer : 71 and 75 respectively for CII7 and CII7xCD37(A) ; --short ; --fastq ; --unused_reads ; -read_trkg). Finally contigs (minimum size, 500 bases) were reorganized and oriented based on alignment to the finished genome of *C. difficile* strain 630 (CD630) (Sebaihia et al., 2006). Contigs that did not match CD630 were localized at the end to obtain each genome scaffold. The short reads genomic data have been deposited in the European Nucleotide Archive (ENA) under accession number
‘PRJEB1488’ and can be accessed online (http://www.ebi.ac.uk/ena/data/view/PRJEB1488).

The nucleotide sequence of the Tn6194-like element from *C. difficile* CII7 has been deposited in the ENA database (http://www.ebi.ac.uk/ena/) under accession no. HG475346.
RESULTS

The entire genome of the PCR-ribotype 001 *C. difficile* strain CII7 that has been previously shown to contain an element highly similar to Tn6194 was sequenced, and a putative conjugative transposon of 28014 bp in length with two nucleotide changes compared to Tn6194 was detected (Fig. 1). Insertion of a guanine at position 7076 (between positions 3152104 and 3152105 in *C. difficile* 2007855; GenBank accession number FN665654) determines a 207nt-elongation of the CDS coding for a replication initiation factor homologous to *orf20* of Tn916. The same insertion is also present in the transposon from the *C. difficile* M68 strain (GenBank accession number FN668375). The replacement of a guanine by a thymine at position 9691 (positions 3149490 in *C. difficile* 2007855) causes the substitution of a methionine by an isoleucine within the sequence of a protein with unknown function. The transposon is located between orthologs of *C. difficile* 630 \(\text{CD630}_\text{31060}\) and \(\text{CD630}_\text{31070}\) in *C. difficile* CII7, while it is integrated within the coding sequences of the ortholog of \(\text{CD630}_\text{28310}\) and \(\text{CD630}_\text{33170}\) in strains 2007855 and M68, respectively.

Filter-mating assays were carried out to transfer the transposon from CII7 to *C. difficile* CD37 (MICs = 0.75 mg/L for erythromycin and 3.0 mg/L for clindamycin) and to CD196R, a rifampicin-resistant derivative of *C. difficile* CD196 (MICs = 1.0 mg/L for erythromycin and 2.0 mg/L for clindamycin). In this study, transfer was achieved at a frequency of \(1.01 \pm 0.36 \times 10^{-8}\) and \(1.43 \pm 0.87 \times 10^{-8}\) per donor for CD37 and CD196R, respectively. Transconjugants were selected from independent experiments to exclude the possibility of analysing siblings. Filter-mating assays were also performed using *C. difficile* CII7 or each one of the four transconjugants CII7xCD37 as donor, and the MLS\(E\)-susceptible *E. faecalis* JH2-2 strain as recipient (MICs = 0.38 mg/L for erythromycin and 8.0 mg/L for clindamycin). Transfer was achieved at a frequency of \(1.74 \pm 1.91 \times 10^{-6}\) per donor. Two
independent transconjugants were obtained from each transfer, for a total of 10 *E. faecalis*
transconjugants. All transconjugants obtained were highly resistant to both erythromycin
and clindamycin (MIC ≥ 256 mg/L), as the donor strain *C. difficile* CII7 was.

Southern blot analysis showed that the conjugative transposon from CII7 integrated the
genome of *C. difficile* CD37 and CD196 at different sites, whereas a unique insertion site
in the genome of *E. faecalis* JH2-2 was observed (Fig. 2).

The genome of the transconjugant CII7xCD37a was completely sequenced and compared
to that of CD37 (GenBank accession number AHJJ01). The transposon was detected
within a copy of the 23S rRNA gene, and no other genetic material from strain CII7 was
detected in CII7xCD37a. The integration site of the element was also determined in all
transconjugants by sspPCR and confirmed by subsequent PCR and Sanger sequencing.
In total, seven different insertion sites were detected in the eight *C. difficile*
transconjugants examined, whereas a unique insertion site was identified in the ten *E.
faecalis* transconjugants analysed. All target sites of the element contained a central AG
dinucleotide (Table 2).

Integration within a copy of the 23S rRNA gene was confirmed in CII7xCD37a and the
transposon was also found in a copy of this gene in CII7xCD196Rd, although at a different
site. In CII7xCD37d the transposon was located between orthologs of *C. difficile* 630
CD630_31060 and *CD630_31070*, like in the donor *C. difficile* CII7, whereas in
CII7xCD196Rc it was detected within the coding sequences of the ortholog of
CD630_28310, like in *C. difficile* 2007855. Finally, the transposon was integrated at the
same position within a copy of the tRNA\(^{\text{Arg}}\) gene in transconjugants CII7xCD37c and
CII7xCD196Rb. In all *E. faecalis* transconjugants, the transposon was always located
within a copy of the tRNA\(^{\text{Arg}}\) gene. Although no genomic data were available about strain
JH2-2, it can be hypothesised that, like *E. faecalis* V583 and OG1RF (Genbank accession

Wasels *et al*
number NC_004668 and CP002621, respectively), its genome contains several copies of the tRNA Arg gene. Interestingly, the element always integrated the same locus (Fig. 2). In CII7 and in all transconjugants obtained in this study, the transposon was able to excise from the genome and form a circular intermediate, restoring the original target site (data not shown).
DISCUSSION

Tn6194 is an *erm*(B)-containing conjugative transposon recently detected in strains belonging to different PCR-ribotypes, worldwide (He et al., 2010; Spigaglia et al., 2011; He et al., 2012; Wasels et al., 2013). In this study, the capacity of this element to be transferred to other strains of *C. difficile* as well as to *E. faecalis* was investigated. While the conjugative transposon Tn5397 from *C. difficile* 630, which confer resistance to tetracycline, has been successfully transferred to *E. faecalis* JH2-2 (Jasni et al., 2010), this is the first evidence of transfer of MLS$_B$ resistance between these two species, at our knowledge.

There are clear differences of behaviour between conjugative transposons, most likely due to their respective recombination modules and to the recipient strain used. While Tn916 has a highly preferred insertion site in *C. difficile* CD37, it can integrate the genome of *C. difficile* 630Δerm and R20291 or *E. faecalis* JH2-2 at different sites (Mullany et al., 2012; Wang et al., 2000). Differently, Tn5397, which contains the *tndX* gene encoding a serine recombinase, has a preferred integration site in *C. difficile* CD37, two in *C. difficile* R20291, one in *E. faecalis* JH2-2 and enters the genome of *Bacillus subtilis* CU2189 at different sites (Jasni et al., 2010; Mullany et al., 1990). Like Tn916, Tn6194 contains genes encoding for putative tyrosine integrase and excisionase (Brouwer et al., 2012). Our results suggest that there are a limited number of integration sites of this transposon within the genome of *C. difficile* CD37 and CD196, and a highly preferential integration site in *E. faecalis* JH2-2.

Elements containing *erm*(B) genes show an important heterogeneity in their genetic structure. Although it has been extensively studied, Tn5398 from *C. difficile* 630 has been mainly detected in PCR-ribotype 012 isolates. Unlike this mobilizable non-conjugative element, Tn6194 contains all modules required for its transfer between cells. These characteristics may explain its diffusion among most of the clinically relevant PCR-
ribotypes, underlining the importance of mobile genetic elements in the spread of resistance in the *C. difficile* population.
ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement No. 237942.

We thank Professor Julian Rood for providing us with C. difficile strain CD37, and Dr. Maria Del Grosso for providing us with E. faecalis strain JH2-2. We are also indebted to the European Study Group on Clostridium difficile (ESGCD) for providing us with C. difficile isolate CII7. We thank Tonino Sofia for editing the manuscript.
REFERENCES

Table 1. Bacterial strains used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Characteristics</th>
<th>PCR-ribotype</th>
<th>Source (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CII7</td>
<td>Ery<sup>R</sup> Cli<sup>S</sup> Rif<sup>S</sup></td>
<td>001</td>
<td>(Barbut 2007)</td>
</tr>
<tr>
<td>CD37</td>
<td>Ery<sup>S</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td>009</td>
<td>(Smith 1981)</td>
</tr>
<tr>
<td>CD196</td>
<td>Ery<sup>S</sup> Cli<sup>S</sup> Rif<sup>S</sup></td>
<td>027</td>
<td>(Popoff 1988)</td>
</tr>
<tr>
<td>CD196R</td>
<td>Ery<sup>S</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td>027</td>
<td>this study</td>
</tr>
<tr>
<td>CII7xCD37 a, b, c, d (4)</td>
<td>Ery<sup>R</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td>009</td>
<td>this study</td>
</tr>
<tr>
<td>CII7xCD196R a, b, c, d (4)</td>
<td>Ery<sup>R</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td>027</td>
<td>this study</td>
</tr>
<tr>
<td>E. faecalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JH2-2</td>
<td>Ery<sup>S</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td></td>
<td>(Jacob 1974)</td>
</tr>
<tr>
<td>CII7xJH2-2 a, b (2)</td>
<td>Ery<sup>R</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td></td>
<td>this study</td>
</tr>
<tr>
<td>[CII7xCD37 A/B/C/D]xJH2-2 a, b (8)</td>
<td>Ery<sup>R</sup> Cli<sup>R</sup> Rif<sup>R</sup></td>
<td></td>
<td>this study</td>
</tr>
</tbody>
</table>

^ain brackets, number of replicates
^bEry^S: erythromycin susceptible; Ery^R: erythromycin resistant; Cli^S: clindamycin susceptible; Cli^R: clindamycin resistant Rif^S: rifampicin susceptible; Rif^R: rifampicin resistant.
Table 2. Insertion sites of the Tn6194 and Tn6194-like elements in wild-type strains and transconjugants analysed in this study

<table>
<thead>
<tr>
<th>Strains</th>
<th>Transposon localisationᵃ</th>
<th>Insertion site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C. difficile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007855 putative adhesin CDS (CD630_28310)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M68 fdhF (CD630_33170)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7 5’UTR of a transcriptional antiterminator (CD630_31070)</td>
</tr>
<tr>
<td>Transconjugants</td>
<td></td>
<td>CI7xCD37 23S rRNA gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD37 5’UTR of hQ (CD630_19740)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD37 tRNA⁶⁰⁹ gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R 5’UTR of a transcriptional antiterminator (CD630_31070)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R eutL (CD630_19150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R tRNA⁶⁰⁹ gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R putative adhesin CDS (CD630_28310)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R 23S rRNA gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CI7xCD196R tRNA⁶⁰⁹ gene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. faecalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All transconjugants tRNA⁶⁰⁹ gene</td>
</tr>
</tbody>
</table>

ᵃ orthologous CDS in C. difficile 630 are indicated in brackets.
Figure 1: Tn6194-like element from *C. difficile* CII7.

Grey boxes show homology with Tn916 from *E. faecalis* DS16 and Tn5398 from *C. difficile* 630. Genes involved in conjugation and in recombination are shown in dark grey and black, respectively. Genes involved in regulation, accessory or still unknown functions are in white.
Figure 2: Southern blot analysis of the transconjugants obtained in this study.

Detection of *erm(B)* on *Hind*III-digested genomic DNA of donor, recipient and transconjugants obtained after transfer of the transposon from *C. difficile* CII7 to (A) *C. difficile* CD37, (B) *C. difficile* CD196 and (C) *E. faecalis* JH2-2. M: marker (DNA Molecular Weight Marker II, Roche). (A) Lane 1: *C. difficile* CII7; lane 2: *C. difficile* CD37; lane 3-6: transconjugants CII7xCD37 a, b, c and d, respectively. (B) Lane 1: *C. difficile* CII7; lane 2: *C. difficile* CD196R; lane 3-6: transconjugants CII7xCD196R a, b, c and d, respectively. (C) Lane 1: *C. difficile* CII7; lane 2: *E. faecalis* JH2-2; lane 3-4, 5-6, 7-8, 9-10 and 11-12: transconjugants CII7xJH2-2, (CII7xCD37a)xJH2-2, (CII7xCD37b)xJH2-2, (CII7xCD37c)xJH2-2 and (CII7xCD37d)xJH2-2, respectively.