R. D. Wells, Advances in mechanisms of genetic instability related to hereditary neurological diseases, Nucleic Acids Research, vol.33, issue.12, pp.3785-3798, 2005.
DOI : 10.1093/nar/gki697

S. Kang, Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli, Nature Genetics, vol.16, issue.2, pp.213-217, 1995.
DOI : 10.1146/annurev.bi.63.070194.003525

C. H. Freudenreich, Expansion and Length-Dependent Fragility of CTG Repeats in Yeast, Science, vol.279, issue.5352, pp.853-856, 1998.
DOI : 10.1126/science.279.5352.853

A. Kerrest, SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination, Nature Structural & Molecular Biology, vol.21, issue.2, pp.159-167, 2009.
DOI : 10.1038/nsmb.1544

A. A. Shishkin, Large-Scale Expansions of Friedreich's Ataxia GAA Repeats in Yeast, Molecular Cell, vol.35, issue.1, pp.82-92, 2009.
DOI : 10.1016/j.molcel.2009.06.017

Y. Zhang, Genome-wide Screen Identifies Pathways that Govern GAA/TTC Repeat Fragility and Expansions in Dividing and Nondividing Yeast Cells, Molecular Cell, vol.48, issue.2, pp.254-265, 2012.
DOI : 10.1016/j.molcel.2012.08.002

J. D. Cleary, Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus, Nature Structural & Molecular Biology, vol.6, issue.99, pp.1079-1087, 2010.
DOI : 10.1074/jbc.M109761200

G. Liu, Altered Replication in Human Cells Promotes DMPK (CTG)n {middle dot} (CAG)n Repeat Instability, Molecular and Cellular Biology, vol.32, issue.9, pp.1618-1632, 2012.
DOI : 10.1128/MCB.06727-11

G. Richard, Contractions and Expansions of CAG/CTG Trinucleotide Repeats occur during Ectopic Gene Conversion in Yeast, by a MUS81-independent Mechanism, Journal of Molecular Biology, vol.326, issue.3, pp.769-782, 2003.
DOI : 10.1016/S0022-2836(02)01405-5

G. Richard, Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11???RAD50???XRS2 complex, The EMBO Journal, vol.36, issue.10, pp.2381-2390, 2000.
DOI : 10.1093/emboj/19.10.2381

I. V. Kovtun, OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells, Nature, vol.12, issue.7143, pp.447-452, 2007.
DOI : 10.1038/nature05778

L. Hubert and . Jr, Topoisomerase 1 and Single-Strand Break Repair Modulate Transcription-Induced CAG Repeat Contraction in Human Cells, Molecular and Cellular Biology, vol.31, issue.15, pp.3105-3112, 2011.
DOI : 10.1128/MCB.05158-11

A. A. Larrea, SnapShot: DNA Mismatch Repair, Cell, vol.141, issue.4, p.731, 2010.
DOI : 10.1016/j.cell.2010.05.002

K. Manley, Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice, Nat. Genet, vol.23, pp.471-473, 1999.

R. M. Pinto, Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches, PLoS Genetics, vol.6, issue.744, p.1003930, 2013.
DOI : 10.1371/journal.pgen.1003930.s016

C. Savouret, CTG repeat instability and size variation timing in DNA repair-deficient mice, The EMBO Journal, vol.22, issue.9, pp.2264-2273, 2003.
DOI : 10.1093/emboj/cdg202

C. Savouret, MSH2-Dependent Germinal CTG Repeat Expansions Are Produced Continuously in Spermatogonia from DM1 Transgenic Mice, Molecular and Cellular Biology, vol.24, issue.2, pp.629-637, 2004.
DOI : 10.1128/MCB.24.2.629-637.2004

S. Tome, MSH2 ATPase Domain Mutation Affects CTG???CAG Repeat Instability in Transgenic Mice, PLoS Genetics, vol.277, issue.5, p.1000482, 2009.
DOI : 10.1371/journal.pgen.1000482.s001

S. Tome, MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice, PLoS Genetics, vol.20, issue.2, p.1003280, 2013.
DOI : 10.1371/journal.pgen.1003280.s009

G. B. Panigrahi, Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutS??, but clustered slip-outs are poorly repaired, Proceedings of the National Academy of Sciences, vol.107, issue.28, pp.12593-12598, 2010.
DOI : 10.1073/pnas.0909087107

G. B. Panigrahi, Human Mismatch Repair Protein hMutL?? Is Required to Repair Short Slipped-DNAs of Trinucleotide Repeats, Journal of Biological Chemistry, vol.287, issue.50, pp.41844-41850, 2012.
DOI : 10.1074/jbc.M112.420398

A. Pluciennik, Extrahelical (CAG)/(CTG) triplet repeat elements support proliferating cell nuclear antigen loading and MutL?? endonuclease activation, Proceedings of the National Academy of Sciences, vol.110, issue.30, pp.12277-12282, 2013.
DOI : 10.1073/pnas.1311325110

C. E. Pearson, Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases, Human Molecular Genetics, vol.6, issue.7, pp.1117-1123, 1997.
DOI : 10.1093/hmg/6.7.1117

B. A. Owen, (CAG)n-hairpin DNA binds to Msh2???Msh3 and changes properties of mismatch recognition, Nature Structural & Molecular Biology, vol.60, issue.8, pp.663-670, 2005.
DOI : 10.1074/jbc.M111450200

L. Tian, Mismatch Recognition Protein MutS?? Does Not Hijack (CAG)n Hairpin Repair in Vitro, Journal of Biological Chemistry, vol.284, issue.31, pp.20452-20456, 2009.
DOI : 10.1074/jbc.C109.014977

G. Richard, Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats, Molecular and General Genetics MGG, vol.261, issue.4-5, pp.871-882, 1999.
DOI : 10.1007/s004380050031

J. J. Miret, Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.17, issue.6, pp.3382-3387, 1997.
DOI : 10.1128/MCB.17.6.3382

J. J. Miret, Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 95, pp.12438-12443, 1998.
DOI : 10.1073/pnas.95.21.12438

S. Bhattacharyya and R. S. Lahue, Srs2 Helicase of Saccharomyces cerevisiae Selectively Unwinds Triplet Repeat DNA, Journal of Biological Chemistry, vol.280, issue.39, pp.33311-33317, 2005.
DOI : 10.1074/jbc.M503325200

A. Dhar and R. S. Lahue, Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae, Nucleic Acids Research, vol.36, issue.10, pp.3366-3373, 2008.
DOI : 10.1093/nar/gkn225

S. Bhattacharyya and R. S. Lahue, Saccharomyces cerevisiae Srs2 DNA Helicase Selectively Blocks Expansions of Trinucleotide Repeats, Molecular and Cellular Biology, vol.24, issue.17, pp.7324-7330, 2004.
DOI : 10.1128/MCB.24.17.7324-7330.2004

R. P. Anand, Overcoming natural replication barriers: differential helicase requirements, Nucleic Acids Research, vol.40, issue.3, pp.1091-1105, 2012.
DOI : 10.1093/nar/gkr836

A. Frizzell, RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility, Cell Reports, vol.6, issue.5, pp.827-835, 2014.
DOI : 10.1016/j.celrep.2014.01.034

M. Seigneur, RuvAB Acts at Arrested Replication Forks, Cell, vol.95, issue.3, pp.419-430, 1998.
DOI : 10.1016/S0092-8674(00)81772-9

M. Lopes, The DNA replication checkpoint response stabilizes stalled replication forks, Nature, vol.7, issue.6846, pp.557-561, 2001.
DOI : 10.1038/35087613

A. Jackson, Expansion of CAG Repeats in Escherichia coli Is Controlled by Single-Strand DNA Exonucleases of Both Polarities, Genetics, vol.198, issue.2, p.168245, 1534.
DOI : 10.1534/genetics.114.168245

M. Giannattasio, Visualization of recombination-mediated damage bypass by template switching, Nature Structural & Molecular Biology, vol.20, issue.10, pp.884-892, 2014.
DOI : 10.1038/nsmb.2888

A. M. Gacy, Trinucleotide repeats that expand in human disease form hairpin structures in vitro, Cell, vol.81, issue.4, pp.533-540, 1995.
DOI : 10.1016/0092-8674(95)90074-8

C. T. Mcmurray, DNA secondary structure: A common and causative factor for expansion in human disease, Proc. Natl. Acad. Sci. USA 96, pp.1823-1825, 1999.
DOI : 10.1073/pnas.96.5.1823

A. Kiliszek, R. , and W. , Structural studies of CNG repeats, Nucleic Acids Research, vol.42, issue.13, 2014.
DOI : 10.1093/nar/gku536

A. Kiliszek, Atomic resolution structure of CAG RNA repeats: structural insights and implications for the trinucleotide repeat expansion diseases, Nucleic Acids Research, vol.38, issue.22, pp.8370-8376, 2010.
DOI : 10.1093/nar/gkq700

B. H. Mooers, The structural basis of myotonic dystrophy from the crystal structure of CUG repeats, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16626-16631, 2005.
DOI : 10.1073/pnas.0505873102

K. Sobczak, RNA structure of trinucleotide repeats associated with human neurological diseases, Nucleic Acids Research, vol.31, issue.19, pp.5469-5482, 2003.
DOI : 10.1093/nar/gkg766

M. Fry and L. A. Loeb, The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure., Proc. Natl. Acad. Sci. USA 91, pp.4950-4954, 1994.
DOI : 10.1073/pnas.91.11.4950

P. Fojtik and M. Vorlickova, The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH, Nucleic Acids Research, vol.29, issue.22, pp.4684-4690, 2001.
DOI : 10.1093/nar/29.22.4684

S. V. Mariappan, The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich???s ataxia11Edited by I. Tinoco, Journal of Molecular Biology, vol.285, issue.5, pp.2035-2052, 1999.
DOI : 10.1006/jmbi.1998.2435

S. M. Mirkin, DNA H form requires a homopurine???homopyrimidine mirror repeat, Nature, vol.330, issue.6147, pp.495-497, 1987.
DOI : 10.1038/330495a0

C. Schaffitzel, In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8572-8577, 2001.
DOI : 10.1073/pnas.141229498

M. M. Axford, Detection of Slipped-DNAs at the Trinucleotide Repeats of the Myotonic Dystrophy Type I Disease Locus in Patient Tissues, PLoS Genetics, vol.22, issue.12, p.1003866, 2013.
DOI : 10.1371/journal.pgen.1003866.s009

G. Samadashwily, Trinucleotide repeats affect DNA replication in vivo, Nature Genetics, vol.12, issue.3, pp.298-304, 1997.
DOI : 10.1016/S0092-8674(00)81846-2

R. Pelletier, Replication and Expansion of Trinucleotide Repeats in Yeast, Molecular and Cellular Biology, vol.23, issue.4, pp.1349-1357, 2003.
DOI : 10.1128/MCB.23.4.1349-1357.2003

H. Kim and D. M. Livingston, A High Mobility Group Protein Binds to Long CAG Repeat Tracts and Establishes Their Chromatin Organization in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.281, issue.23, pp.15735-15740, 2006.
DOI : 10.1074/jbc.M512816200

N. C. House, NuA4 Initiates Dynamic Histone H4 Acetylation to Promote High-Fidelity Sister Chromatid Recombination at Postreplication Gaps, Molecular Cell, vol.55, issue.6, pp.818-828, 2014.
DOI : 10.1016/j.molcel.2014.07.007

A. M. Gannon, MutS?? and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells, Nucleic Acids Research, vol.40, issue.20, pp.10324-10333, 2012.
DOI : 10.1093/nar/gks810

K. Debacker, Histone Deacetylase Complexes Promote Trinucleotide Repeat Expansions, PLoS Biology, vol.26, issue.2, p.1001257, 2012.
DOI : 10.1371/journal.pbio.1001257.s012

V. Dion, Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline, Human Molecular Genetics, vol.17, issue.9, pp.1306-1317, 2008.
DOI : 10.1093/hmg/ddn019

L. Colleaux, Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease, Cell, vol.44, issue.4, pp.521-533, 1986.
DOI : 10.1016/0092-8674(86)90262-X

T. Gaj, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends in Biotechnology, vol.31, issue.7, pp.397-405, 2013.
DOI : 10.1016/j.tibtech.2013.04.004

H. Kim, K. , and J. S. , A guide to genome engineering with programmable nucleases, Nature Reviews Genetics, vol.5, issue.5, pp.321-334, 2014.
DOI : 10.1038/nmeth0111-7b

S. Arnould, Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets, Journal of Molecular Biology, vol.355, issue.3, pp.443-458, 2006.
DOI : 10.1016/j.jmb.2005.10.065

F. Daboussi, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases, Nucleic Acids Research, vol.40, issue.13, pp.6367-6379, 2012.
DOI : 10.1093/nar/gks268

Y. G. Kim, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain., Proceedings of the National Academy of Sciences, vol.93, issue.3, pp.1156-1160, 1996.
DOI : 10.1073/pnas.93.3.1156

D. Mittelman, Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells, Proceedings of the National Academy of Sciences, vol.106, issue.24, pp.9607-9612, 2009.
DOI : 10.1073/pnas.0902420106

G. Liu, Replication-dependent instability at (CTG)???(CAG) repeat hairpins in human cells, Nature Chemical Biology, vol.35, issue.9, pp.652-659, 2010.
DOI : 10.1038/nchembio.416

J. C. Miller, An improved zinc-finger nuclease architecture for highly specific genome editing, Nature Biotechnology, vol.11, issue.7, pp.778-785, 2007.
DOI : 10.1038/nbt1319

S. Kay, A Bacterial Effector Acts as a Plant Transcription Factor and Induces a Cell Size Regulator, Science, vol.318, issue.5850, pp.648-651, 2007.
DOI : 10.1126/science.1144956

J. Boch, Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors, Science, vol.326, issue.5959, pp.1509-1512, 2009.
DOI : 10.1126/science.1178811

M. J. Moscou and A. J. Bogdanove, A Simple Cipher Governs DNA Recognition by TAL Effectors, Science, vol.326, issue.5959, p.1501, 2009.
DOI : 10.1126/science.1178817

M. Christian, Targeting DNA Double-Strand Breaks with TAL Effector Nucleases, Genetics, vol.186, issue.2, pp.757-761, 2010.
DOI : 10.1534/genetics.110.120717

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942870

G. F. Richard, Highly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast, PLoS ONE, vol.10, issue.4, p.95611, 2014.
DOI : 10.1371/journal.pone.0095611.s004

URL : https://hal.archives-ouvertes.fr/pasteur-01370694

S. Boissel, megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering, Nucleic Acids Research, vol.42, issue.4, pp.2591-2601, 2014.
DOI : 10.1093/nar/gkt1224

B. P. Kleinstiver, The I-TevI Nuclease and Linker Domains Contribute to the Specificity of Monomeric TALENs, G3: Genes|Genomes|Genetics, vol.4, issue.6, pp.1155-1165, 2014.
DOI : 10.1534/g3.114.011445

M. Beurdeley, Compact designer TALENs for efficient genome engineering, Nature Communications, vol.2, p.1762, 2013.
DOI : 10.1038/ncomms2782

R. Louwen, The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria, Microbiology and Molecular Biology Reviews, vol.78, issue.1, pp.74-88, 2014.
DOI : 10.1128/MMBR.00039-13

M. Jinek, A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, issue.6096, pp.816-821, 2012.
DOI : 10.1126/science.1225829

J. A. Doudna and E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9, Science, vol.346, issue.6213, p.1258096, 2014.
DOI : 10.1126/science.1258096

C. Anders, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, vol.1079, issue.7519, pp.569-573, 2014.
DOI : 10.1038/nature13579

S. H. Sternberg, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 Targeted genome editing across species using ZFNs and TALENs, Nature Science, vol.94, issue.333, p.307, 2011.

S. Chen, A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly, Nucleic Acids Research, vol.41, issue.4, pp.2769-2778, 2013.
DOI : 10.1093/nar/gks1356

K. J. Beumer, Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila, G3: Genes|Genomes|Genetics, vol.3, issue.10, pp.1717-1725, 2013.
DOI : 10.1534/g3.113.007260

A. Veres, Low Incidence of Off-Target Mutations in Individual CRISPR-Cas9 and TALEN Targeted Human Stem Cell Clones Detected by Whole-Genome Sequencing, Cell Stem Cell, vol.15, issue.1, pp.27-30, 2014.
DOI : 10.1016/j.stem.2014.04.020

A. Fischer, 20 years of gene therapy for SCID, Nature Immunology, vol.326, issue.6, pp.457-460, 2010.
DOI : 10.1038/ni0610-457

A. Fiszer and W. J. Krzyzosiak, Oligonucleotide-based strategies to combat polyglutamine diseases, Nucleic Acids Research, vol.42, issue.11, pp.6787-6810, 2014.
DOI : 10.1093/nar/gku385

J. Riviere, Variable correction of Artemis deficiency by I-Sce1-meganuclease-assisted homologous recombination in murine hematopoietic stem cells, Gene Therapy, vol.649, issue.5, pp.529-532, 2014.
DOI : 10.1016/j.bcmd.2011.04.001

A. Mankodi, Myotonic Dystrophy in Transgenic Mice Expressing an Expanded CUG Repeat, Science, vol.289, issue.5485, pp.1769-1772, 2000.
DOI : 10.1126/science.289.5485.1769

H. Seznec, Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities, Human Molecular Genetics, vol.10, issue.23, pp.2717-2726, 2001.
DOI : 10.1093/hmg/10.23.2717

URL : https://hal.archives-ouvertes.fr/hal-00179658

L. Jager, A rapid protocol for construction and production of high-capacity adenoviral vectors, Nature Protocols, vol.93, issue.4, pp.547-564, 2009.
DOI : 10.1093/nar/19.18.5053

W. Xue, CRISPR-mediated direct mutation of cancer genes in the mouse liver, Nature, vol.28, issue.7522, pp.380-384, 2014.
DOI : 10.1038/nature13589

C. M. Moure, The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity Domain packing and dynamics in the DNA complex of the N-terminal zinc fingers of TFIIIA, J. Mol. Biol. Nat. Struct. Biol, vol.334, issue.4, pp.605-608, 1997.

D. Deng, Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors, Science, vol.335, issue.6069, pp.720-723, 2012.
DOI : 10.1126/science.1215670