C. Mcmurray, Mechanisms of trinucleotide repeat instability during human development, Nature Reviews Genetics, vol.17, issue.11, pp.786-799, 2010.
DOI : 10.1038/nrg2828

S. Mirkin, DNA structures, repeat expansions and human hereditary disorders, Current Opinion in Structural Biology, vol.16, issue.3, pp.351-358, 2006.
DOI : 10.1016/j.sbi.2006.05.004

H. Orr and H. Zoghbi, Trinucleotide Repeat Disorders, Annual Review of Neuroscience, vol.30, issue.1, pp.575-621, 2007.
DOI : 10.1146/annurev.neuro.29.051605.113042

C. Pearson, K. Edamura, and J. Cleary, Repeat instability: mechanisms of dynamic mutations, Nature Reviews Genetics, vol.58, issue.10, pp.729-742, 2005.
DOI : 10.1038/nrg1689

L. Brown and S. Brown, Alanine tracts: the expanding story of human illness and trinucleotide repeats, Trends in Genetics, vol.20, issue.1, pp.51-58, 2004.
DOI : 10.1016/j.tig.2003.11.002

J. Blackwood, E. Okely, R. Zahra, J. Eykelenboom, and D. Leach, DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG{middle dot}CTG trinucleotide repeat, Proceedings of the National Academy of Sciences, vol.107, issue.52, pp.22582-22586, 2010.
DOI : 10.1073/pnas.1012906108

S. Kang, A. Jaworski, K. Ohshima, and R. Wells, Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli, Nature Genetics, vol.16, issue.2, pp.213-217, 1995.
DOI : 10.1146/annurev.bi.63.070194.003525

S. Bhattacharyya and R. Lahue, Saccharomyces cerevisiae Srs2 DNA Helicase Selectively Blocks Expansions of Trinucleotide Repeats, Molecular and Cellular Biology, vol.24, issue.17, pp.7324-7330, 2004.
DOI : 10.1128/MCB.24.17.7324-7330.2004

C. Freudenreich, S. Kantrow, and V. Zakian, Expansion and Length-Dependent Fragility of CTG Repeats in Yeast, Science, vol.279, issue.5352, pp.853-856, 1998.
DOI : 10.1126/science.279.5352.853

A. Kerrest, R. Anand, R. Sundararajan, R. Bermejo, and G. Liberi, SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination, Nature Structural & Molecular Biology, vol.21, issue.2, pp.159-167, 2009.
DOI : 10.1038/nsmb.1544

J. Jung, M. Van-jaarsveld, S. Shieh, K. Xu, and N. Bonini, Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in Drosophila melanogaster, Genetics, vol.187, issue.1, pp.61-71, 2011.
DOI : 10.1534/genetics.110.121418

M. Gomes-pereira and D. Monckton, Chemically induced increases and decreases in the rate of expansion of a CAG{middle dot}CTG triplet repeat, Nucleic Acids Research, vol.32, issue.9, pp.2865-2872, 2004.
DOI : 10.1093/nar/gkh612

C. Savouret, E. Brisson, J. Essers, R. Kanaar, and A. Pastink, CTG repeat instability and size variation timing in DNA repair-deficient mice, The EMBO Journal, vol.22, issue.9, pp.2264-2273, 2003.
DOI : 10.1093/emboj/cdg202

I. Kovtun, Y. Liu, M. Bjoras, A. Klungland, and S. Wilson, OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells, Nature, vol.12, issue.7143, pp.447-452, 2007.
DOI : 10.1038/nature05778

V. Dion, Y. Lin, L. Hubert, J. Waterland, R. Wilson et al., Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline, Human Molecular Genetics, vol.17, issue.9, pp.1306-1317, 2008.
DOI : 10.1093/hmg/ddn019

D. Claassen and R. Lahue, Expansions of CAG{middle dot}CTG repeats in immortalized human astrocytes, Human Molecular Genetics, vol.16, issue.24, pp.3088-3096, 2007.
DOI : 10.1093/hmg/ddm270

V. Gorbunova, A. Seluanov, V. Dion, Z. Sandor, and J. Meservy, Selectable System for Monitoring the Instability of CTG/CAG Triplet Repeats in Mammalian Cells, Molecular and Cellular Biology, vol.23, issue.13, pp.4485-4493, 2003.
DOI : 10.1128/MCB.23.13.4485-4493.2003

L. Castel, A. Nakamori, M. Tome, S. Chitayat, D. Gourdon et al., Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues, Human Molecular Genetics, vol.20, issue.1, pp.1-15, 2011.
DOI : 10.1093/hmg/ddq427

J. Cleary and C. Pearson, Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability, Trends in Genetics, vol.21, issue.5, pp.272-280, 2005.
DOI : 10.1016/j.tig.2005.03.008

B. Lenzmeier and C. Freudenreich, Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair, Cytogenetic and Genome Research, vol.100, issue.1-4, pp.7-24, 2003.
DOI : 10.1159/000072836

G. Richard, A. Kerrest, and B. Dujon, Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes, Microbiology and Molecular Biology Reviews, vol.72, issue.4, pp.686-727, 2008.
DOI : 10.1128/MMBR.00011-08

O. Hoy, K. Tsilfidis, C. Mahadevan, M. Neville, C. Barcelo et al., Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission, Science, vol.259, issue.5096, pp.809-812, 1993.
DOI : 10.1126/science.8094260

L. Colleaux, L. Auriol, M. Betermier, G. Cottarel, and A. Jacquier, Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease, Cell, vol.44, issue.4, pp.521-533, 1986.
DOI : 10.1016/0092-8674(86)90262-X

R. Kostriken, J. Strathern, A. Klar, J. Hicks, and F. Heffron, A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae, Cell, vol.35, issue.1, pp.167-174, 1983.
DOI : 10.1016/0092-8674(83)90219-2

G. Richard, C. Cyncynatus, and B. Dujon, Contractions and Expansions of CAG/CTG Trinucleotide Repeats occur during Ectopic Gene Conversion in Yeast, by a MUS81-independent Mechanism, Journal of Molecular Biology, vol.326, issue.3, pp.769-782, 2003.
DOI : 10.1016/S0022-2836(02)01405-5

G. Richard, B. Dujon, and J. Haber, Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats, Molecular and General Genetics MGG, vol.261, issue.4-5, pp.871-882, 1999.
DOI : 10.1007/s004380050031

G. Richard, G. Goellner, C. Mcmurray, and J. Haber, Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11???RAD50???XRS2 complex, The EMBO Journal, vol.36, issue.10, pp.2381-2390, 2000.
DOI : 10.1093/emboj/19.10.2381

G. Richard and F. Pâques, Mini- and microsatellite expansions: the recombination connection, EMBO reports, vol.88, issue.2, pp.122-126, 2000.
DOI : 10.1093/embo-reports/kvd031

C. Fairhead and B. Dujon, Consequences of unique double-stranded breaks in yeast chromosomes: death or homozygosis, MGG Molecular & General Genetics, vol.1, issue.2, pp.170-180, 1993.
DOI : 10.1007/BF00277054

A. Choulika, A. Perrin, B. Dujon, and J. Nicolas, Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.15, issue.4, pp.1968-1973, 1995.
DOI : 10.1128/MCB.15.4.1968

J. Haber, In vivo biochemistry: Physical monitoring of recombination induced by site-specific endonucleases, BioEssays, vol.14, issue.7, pp.609-620, 1995.
DOI : 10.1002/bies.950170707

S. Arnould, P. Chames, C. Perez, E. Lacroix, and A. Duclert, Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets, Journal of Molecular Biology, vol.355, issue.3, pp.443-458, 2006.
DOI : 10.1016/j.jmb.2005.10.065

F. Pâques and P. Duchâteau, Meganucleases and DNA Double-Strand Break-Induced Recombination: Perspectives for Gene Therapy, Current Gene Therapy, vol.7, issue.1, pp.49-66, 2007.
DOI : 10.2174/156652307779940216

B. Stoddard, Homing Endonucleases: From Microbial Genetic Invaders to Reagents for Targeted DNA Modification, Structure, vol.19, issue.1, pp.7-15, 2011.
DOI : 10.1016/j.str.2010.12.003

F. Daboussi, M. Zaslavskiy, L. Poirot, M. Loperfido, and A. Gouble, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases, Nucleic Acids Research, vol.40, issue.13, pp.6367-6379, 2012.
DOI : 10.1093/nar/gks268

Y. Kim, J. Cha, and S. Chandrasegaran, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain., Proceedings of the National Academy of Sciences, vol.93, issue.3, pp.1156-1160, 1996.
DOI : 10.1073/pnas.93.3.1156

F. Chen, S. Pruett-miller, Y. Huang, M. Gjoka, and K. Duda, High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases, Nature Methods, vol.106, issue.9, pp.753-755, 2011.
DOI : 10.1093/nar/gkq589

Y. Doyon, J. Mccammon, J. Miller, F. Faraji, and C. Ngo, Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nature Biotechnology, vol.59, issue.6, pp.702-708, 2008.
DOI : 10.1038/nbt1409

J. Boch, H. Scholze, S. Schornack, A. Landgraf, and S. Hahn, Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors, Science, vol.326, issue.5959, pp.1509-1512, 2009.
DOI : 10.1126/science.1178811

M. Moscou and A. Bogdanove, A Simple Cipher Governs DNA Recognition by TAL Effectors, Science, vol.326, issue.5959, p.1501, 2009.
DOI : 10.1126/science.1178817

M. Christian, T. Cermak, E. Doyle, C. Schmidt, and F. Zhang, Targeting DNA Double-Strand Breaks with TAL Effector Nucleases, Genetics, vol.186, issue.2, pp.757-761, 2010.
DOI : 10.1534/genetics.110.120717

T. Li, S. Huang, W. Jiang, D. Wright, and M. Spalding, TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain, Nucleic Acids Research, vol.39, issue.1, pp.359-372, 2011.
DOI : 10.1093/nar/gkq704

M. Beurdeley, F. Bietz, J. Li, S. Thomas, and T. Stoddard, Compact designer TALENs for efficient genome engineering, Nature Communications, vol.2, p.1762, 2013.
DOI : 10.1038/ncomms2782

T. Cermak, E. Doyle, M. Christian, L. Wang, and Y. Zhang, Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Research, vol.39, issue.12, p.82, 2011.
DOI : 10.1093/nar/gkr218

V. Bedell, Y. Wang, J. Campbell, T. Poshusta, and C. Starker, In vivo genome editing using a high-efficiency TALEN system, Nature, vol.108, issue.7422, pp.114-118, 2012.
DOI : 10.1038/nature11537

L. Cade, D. Reyon, W. Hwang, S. Tsai, and S. Patel, Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs, Nucleic Acids Research, vol.40, issue.16, pp.8001-8010, 2012.
DOI : 10.1093/nar/gks518

S. Chen, G. Oikonomou, C. Chiu, B. Niles, and J. Liu, A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly, Nucleic Acids Research, vol.41, issue.4, pp.2769-2778, 2013.
DOI : 10.1093/nar/gks1356

Z. Qiu, M. Liu, Z. Chen, Y. Shao, and H. Pan, High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases, Nucleic Acids Research, vol.41, issue.11, 2013.
DOI : 10.1093/nar/gkt258

A. Feinberg and B. Vogelstein, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Analytical Biochemistry, vol.132, issue.1, pp.6-13, 1983.
DOI : 10.1016/0003-2697(83)90418-9

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

H. Li, B. Handsaker, A. Wysoker, T. Fennell, and J. Ruan, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.
DOI : 10.1093/bioinformatics/btp352

M. Depristo, E. Banks, R. Poplin, K. Garimella, and J. Maguire, A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nature Genetics, vol.8, issue.5, pp.491-498, 2011.
DOI : 10.1126/science.1177074

D. Koboldt, Q. Zhang, D. Larson, D. Shen, and M. Mclellan, VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing, Genome Research, vol.22, issue.3, pp.568-576, 2012.
DOI : 10.1101/gr.129684.111

L. Guarente, R. Yocum, and P. Gifford, A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site., Proceedings of the National Academy of Sciences, vol.79, issue.23, pp.7410-7414, 1982.
DOI : 10.1073/pnas.79.23.7410

E. Giniger, S. Varnum, and M. Ptashne, Specific DNA binding of GAL4, a positive regulatory protein of yeast, Cell, vol.40, issue.4, pp.767-774, 1985.
DOI : 10.1016/0092-8674(85)90336-8

A. Bogdanove and D. Voytas, TAL Effectors: Customizable Proteins for DNA Targeting, Science, vol.333, issue.6051, pp.1843-1846, 2011.
DOI : 10.1126/science.1204094

M. Lynch, W. Sung, K. Morris, N. Coffey, and C. Landry, A genome-wide view of the spectrum of spontaneous mutations in yeast, Proceedings of the National Academy of Sciences, vol.105, issue.27, pp.9272-9277, 2008.
DOI : 10.1073/pnas.0803466105

G. Lang and A. Murray, Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae, Genetics, vol.178, issue.1, pp.67-82, 2008.
DOI : 10.1534/genetics.107.071506

G. Richard and B. Dujon, Trinucleotide repeats in yeast, Research in Microbiology, vol.148, issue.9, pp.731-744, 1997.
DOI : 10.1016/S0923-2508(97)82449-7

D. Mittelman, C. Moye, J. Morton, K. Sykoudis, and Y. Lin, Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells, Proceedings of the National Academy of Sciences, vol.106, issue.24, pp.9607-9612, 2009.
DOI : 10.1073/pnas.0902420106

G. Liu, X. Chen, J. Bissler, R. Sinden, and M. Leffak, Replication-dependent instability at (CTG)???(CAG) repeat hairpins in human cells, Nature Chemical Biology, vol.35, issue.9, pp.652-659, 2010.
DOI : 10.1038/nchembio.416

A. Wood, T. Lo, B. Zeitler, C. Pickle, and E. Ralston, Targeted Genome Editing Across Species Using ZFNs and TALENs, Science, vol.333, issue.6040, p.307, 2011.
DOI : 10.1126/science.1207773

K. Beumer, J. Trautman, M. Christian, T. Dahlem, and C. Lake, Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila, G3: Genes|Genomes|Genetics, vol.3, issue.10, pp.1717-1725, 2013.
DOI : 10.1534/g3.113.007260

D. Deng, C. Yan, X. Pan, M. Mahfouz, and J. Wang, Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors, Science, vol.335, issue.6069, pp.720-723, 2012.
DOI : 10.1126/science.1215670

E. Pennisi, The CRISPR Craze, Science, vol.341, issue.6148, pp.833-836, 2013.
DOI : 10.1126/science.341.6148.833

P. Pinheiro, G. Scarlett, A. Rodgers, P. Rodger, and A. Murray, Structures of CUG Repeats in RNA: POTENTIAL IMPLICATIONS FOR HUMAN GENETIC DISEASES, Journal of Biological Chemistry, vol.277, issue.38, pp.35183-35190, 2002.
DOI : 10.1074/jbc.M202235200

S. Sternberg, S. Redding, M. Jinek, E. Greene, and J. Doudna, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 2014.

R. Libby, K. Hagerman, V. Pineda, R. Lau, and D. Cho, CTCF cis-Regulates Trinucleotide Repeat Instability in an Epigenetic Manner: A Novel Basis for Mutational Hot Spot Determination, PLoS Genetics, vol.13, issue.11, p.1000257, 2008.
DOI : 10.1371/journal.pgen.1000257.s008

J. Cleary, T. S. , L. Castel, A. Panigrahi, G. Foiry et al., Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus, Nature Structural & Molecular Biology, vol.6, issue.99, pp.1079-1087, 2010.
DOI : 10.1074/jbc.M109761200

F. Pâques and J. Haber, Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.63, pp.349-404, 1999.

W. Huang, J. Zheng, Y. He, and C. Luo, Tandem Repeat Modification during Double-Strand Break Repair Induced by an Engineered TAL Effector Nuclease in Zebrafish Genome, PLoS ONE, vol.22, issue.12, p.84176, 2013.
DOI : 10.1371/journal.pone.0084176.s001

D. Schwartz and C. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell, vol.37, issue.1, pp.67-75, 1984.
DOI : 10.1016/0092-8674(84)90301-5

G. Richard, C. Fairhead, and B. Dujon, Complete transcriptional map of yeast chromosome XI in different life conditions, Journal of Molecular Biology, vol.268, issue.2, pp.303-321, 1997.
DOI : 10.1006/jmbi.1997.0973

C. Fairhead and B. Dujon, Transcript map of two regions from chromosome XI ofSaccharomyces cerevisiae for interpretation of systematic sequencing results, Yeast, vol.6, issue.11, pp.1403-1413, 1994.
DOI : 10.1002/yea.320101103