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SUMMARY

Systems approaches for the study of immune
signaling pathways have been traditionally based
on purified cells or cultured lines. However, in vivo re-
sponses involve the coordinated action of multiple
cell types, which interact to establish an inflamma-
tory microenvironment. We employed standardized
whole-blood stimulation systems to test the hypoth-
esis that responses to Toll-like receptor ligands or
whole microbes can be defined by the transcriptional
signatures of key cytokines. We found 44 genes,
identified using Support Vector Machine learning,
that captured the diversity of complex innate immune
responses with improved segregation between
distinct stimuli. Furthermore, we used donor vari-
ability to identify shared inter-cellular pathways and
trace cytokine loops involved in gene expression.
This provides strategies for dimension reduction of
large datasets and deconvolution of innate immune
responses applicable for characterizing immuno-
modulatory molecules. Moreover, we provide an
interactive R-Shiny application with healthy donor
reference values for induced inflammatory genes.

INTRODUCTION

The initiation of inflammatory responses is typically triggered by

a local event engaging sentinel cells, leading to the subsequent

recruitment and accumulation of leukocytes. This process can
Cell Rep
This is an open access article under the CC BY-N
result in the elimination of the initial cause of tissue disruption,

the clearance of dying cells, and establishes a path toward tissue

resolution. Cytokinesmediate cell-to-cell communication, acting

to recruit immune cells to inflammatory microenvironment and

drive the required effector mechanisms. Despite the inherent

complexity of these processes in natura, analyses of inflamma-

tion have typically focused on the decision-making circuits within

cells, and, inmost cases, have been restricted to single cell types

(Amit et al., 2009; Jovanovic et al., 2015; Lee et al., 2014). Several

other studies have assessed in vivo responses to vaccination,

typically performing sampling over time to assess induced pro-

tein, mRNA expression, and seroconversion (Banchereau

et al., 2014; Li et al., 2014; Tsang et al., 2014). While informative,

these latter approaches permit the testing of only one stimulation

condition per individual and are restricted to qualified or experi-

mental vaccines. To properly account for inter-individual vari-

ability in the deconvolution of complex immune responses,

both simple (synthetic or purified ligand) and complex (live or

heat-killed microbe), stimulations must be performed in the

same donor and at the same time, and standardized approaches

for all steps from sample collection to analysis must be applied.

To test the hypothesis that responses to Toll-like receptor li-

gands or whole microbes can be captured by the transcriptional

signature of key effector cytokines, we employed a standardized

whole-blood stimulation approach with an automated single-

step RNA extraction and hybridization gene array readout.

Stimulations were performed at the point-of-care, using sy-

ringe-based medical devices (TruCulture tubes), in a pilot study

that consisted of 25 well-characterized healthy individuals of Eu-

ropean ancestry (Thomas et al., 2015). Previously, we reported

the testing of protein signatures present in the culture superna-

tant (Duffy et al., 2014). Herein, we used the cell pellets extracted
orts 16, 2777–2791, September 6, 2016 ª 2016 The Authors. 2777
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from the TruCulture stimulation systems to define the transcrip-

tional response to clinically relevant cytokines; interferon-

alpha 2A (IFN-a), interferon-beta 1 (IFN-b1), interferon-gamma

(IFN-g), tumor necrosis factor alpha (TNF-a), and interleukin

1-beta (IL-1b). By defining unique and distinct gene expression

signatures of cytokine-induced transcription, it was possible to

test the clustering and classification of responses to Toll-like re-

ceptor (TLR) agonists or whole microbes (including heat killed

[HK] gram-negative bacteria, HK gram-positive bacteria, HK

fungi, live mycobacteria and viruses). Our results demonstrate

the ability to define complex stimuli in terms of the underlying

cytokine loops. Moreover, we provide reference values that

reflect the degree of naturally occurring variation of immune

responses among healthy individuals originating from a homoge-

neous European background. These data have been made

available as a reference for the community, accessible through

an online R-Shiny application that permits data-mining using

the analytical methods presented.

RESULTS

Distinct Transcriptional Signatures Induced by the
IFN-b, IFN-g, IL-1b, and TNF-a Cytokines
To perform ex vivo stimulation while preserving physiological

cellular interactions, we utilized syringe-based medical devices

for activating immune cells present in whole blood. Based on

initial dose-finding studies, quality assurance, solubility, and

stability testing8, we prioritized stimuli for development in

TruCulture whole-blood collection and culture devices (Myriad

RBM). After 22 hr stimulation, insertion of a valve separator

yielded a cell pellet that was stabilized in Trizol LS and stored

at �80�C for subsequent mRNA expression analysis utilizing

the NanoString nCounter technology (Figure S1A). Due to the Tri-

zol content in our samples and to minimize pre-analytical biases,

we established an automatedmRNA single-step chloroform-free

extraction protocol (Tecan script provided on-line, see http://

www.pasteur.fr/labex/milieu-interieur). Direct comparison with

conventional RNA extraction protocols indicated excellent cor-

relation in gene expression counts between the two extraction

methods (Spearman’s rank-order correlation, rs > 0.99, Fig-

ure S1B). Expression data were normalizedwith nSolver Analysis

Software (NanoString), using four housekeeping genes: RPL19,

TBP, POLR2A, andHPRT (Figures S1C–S1F). These four house-

keeping genes were selected following the application of the

geNorm method (Vandesompele et al., 2002), an established
Figure 1. Distinct Gene Expression Signature Induced by Cytokine Sti

Whole-blood stimulation was performed on 25 healthy donors using TruCulture

TNF-a (turquoise). Principle component analysis (PCA) was used to project mRNA

to applying PCA, values for each of the 572 mRNA were log transformed, centere

four cytokine stimuli are indicated by the colored circles and the vector position

(A) Left: PC1 versus PC2. Right: PC2 versus PC3. The percentage of variance ca

(B) PCA on filtered gene expression data; first for differential gene expression (p

followed by the classification of samples using linear support vector machine (SV

gene set of 44 genes.

(C) A bi-plot of the 44 gene set variable PCA is depicted.

(D) Silhouette scores for each cytokine IFN-b (green), IFN-g (gray), IL-1b (purple)

44-gene set.

(E) Hierarchical clustering of the donors based on the filtered gene list and four cyto
algorithm for identifying stable housekeeping genes. The selec-

tion of these genes is supported by their strong correlations pre-

and post-stimulation (rs > 0.9) across the 25 donors, in contrast

with those housekeeping genes that were discarded (rs < 0.7)

(Figure S1D and data not shown). The overall rationale for the se-

lection of the NanoString platform, as compared to other tran-

scriptional profiling strategies, is presented in Table S1. This

choice was validated by the high reproducibility of the data ob-

tained when experiments were performed at different times or

at separate institutional core facilities (rs > 0.98, Figure S1B).

To assess the signatures induced by cytokine stimulation, we

analyzed the expression data of a total of 572 genes in the 25 do-

nors, using unsupervised principal component analysis (PCA)

(Figure 1A). The PCA revealed strong clustering of stimuli-spe-

cific responses, with the first three principal components (PCs)

explaining 55% of the total variance; PC1 separated IL-1b and

TNF-a from IFN-b and IFN-g, and PC2 distinguished TNF-a

from IL-1b and IFN-b from IFN-g. Of note, the response to

IFN-a was also tested and found to be similar to that of the

IFN-b response (t test with q < 0.05 reported no variables as

significantly different between the two stimuli) (Figure S3), and

therefore, IFN-a was excluded from further analyses.

To reduce the dimensionality of the data and exclude genes

that did not contribute to unique cytokine-induced signatures,

we next defined the differential gene expression for each stim-

ulus with respect to the null control using linear support vector

machine (SVM) approaches (Burges, 1998). This enabled us

the selection of predictive cytokine gene signatures from gene

lists ranked according to a paired t test (individual stimulus

versus null condition). Bootstrapping of data in the SVM training

phase ensured robust results (details provided in the Experi-

mental Procedures). The union of the selected cytokine gene sig-

natures yielded a set of 44 genes that separated the four cytokine

stimuli (Table 1). The resulting PCA projection revealed that the

four stimulation conditions could be separated into four clearly

distinct clusters based on the expression levels of these 44

genes, with PC1 and PC2 capturing 82% of the total variance

(Figure 1B). The 44 genes are represented on a biplot—a syn-

chronized dual projection of the variables that drive the loading

of the PC vectors (Figure 1C). To quantify the improved clus-

tering provided by this approach, we calculated silhouette

scores, i.e., a measure of the distance between the respective

k-means clusters, reported for each sample based on the likeli-

hood to localize into one cluster as compared to any of the three

other defined clusters. Comparison between the scores that
mulation

systems pre-loaded with IFN-b (pale green), IFN-g (gray), IL-1b (purple), and

expression data from 572 genes employing Qlucore Omics Explorer v3.1. Prior

d to a mean value of zero across each donor, and scaled to unit variance. The

of each of the 25 donors is represented.

ptured by each PC is indicated.

aired t test comparing each cytokine with null and a q value cut-off of 10�3);

M) approaches, and genes ranked according to a paired t test, yielding a union

, and TNF-a (turquoise) based on the complete 572-gene set and the selected

kine stimuli andNull condition showing the unique and overlapping expression.
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Table 1. Cytokine Gene Signature that Defines Transcriptional

Response to IFN-b, IFN-g, IL-1b, and TNF-a

Gene

Name

Associated

Cytokine

q Value

(Stim versus Null)

q Value (ANOVA on

Four Cytokine Stimuli)

BST2 IFN-b 4.3 3 10�43 4.6 3 10�43

C3 TNF-a 1.6 3 10�64 2.3 3 10�64

CCL2 IL-1b 3.1 3 10�21 2.7 3 10�21

CCL20 IL-1b 6.3 3 10�62 1.6 3 10�61

CCL4 TNF-a 4.1 3 10�57 7.9 3 10�57

CCL8 IFN-b 8.8 3 10�53 9.6 3 10�53

CCR1 IFN-b 8.8 3 10�33 9.0 3 10�33

CD44 TNF-a 3.2 3 10�58 5.8 3 10�58

CD83 TNF-a 1.4 3 10�59 2.4 3 10�59

CDKN1A IFN-g 1.2 3 10�41 1.3 3 10�41

CXCL10 IFN-b 5.3 3 10�51 5.7 3 10�51

CXCL2 IL-1b 8.4 3 10�39 7.5 3 10�39

CXCL9 IFN-g 4.0 3 10�43 4.0 3 10�43

HLA-DMB IFN-g 3.8 3 10�61 2.5 3 10�61

HLA-DPA1 IFN-g 4.2 3 10�51 3.5 3 10�51

HLA-DPB1 IFN-g 3.5 3 10�51 2.7 3 10�51

HLA-DRA IFN-g 4.0 3 10�45 3.9 3 10�45

IDO1 IFN-g 2.2 3 10�61 1.2 3 10�61

IFI35 IFN-b 3.4 3 10�55 2.7 3 10�55

IFIH1 IFN-b 2.3 3 10�54 2.2 3 10�54

IFITM1 IFN-b 5.7 3 10�49 6.1 3 10�49

IL1A IL-1b 1.1 3 10�59 2.0 3 10�59

IL1B IL-1b 7.8 3 10�83 2.9 3 10�82

IL6 IL-1b 1.9 3 10�67 6.9 3 10�67

IRAK2 TNF-a 4.8 3 10�62 9.8 3 10�62

IRF7 IFN-b 3.4 3 10�56 2.3 3 10�56

JAK2 IFN-g 5.8 3 10�51 5.0 3 10�51

LILRB1 IL-1b 1.6 3 10�37 1.5 3 10�37

MX1 IFN-b 1.4 3 10�61 6.3 3 10�62

NFKB1 IL-1b 8.7 3 10�52 1.0 3 10�51

NFKB2 TNF-a 2.0 3 10�64 3.6 3 10�64

NFKBIA TNF-a 2.6 3 10�67 3.2 3 10�67

NFKBIZ IL-1b 2.1 3 10�61 3.5 3 10�61

POU2F2 IL-1b 1.8 3 10�70 6.6 3 10�70

RARRES3 IFN-g 2.2 3 10�49 2.1 3 10�49

RELB TNF-a 1.8 3 10�40 1.9 3 10�40

SLAMF7 IFN-g 9.0 3 10�62 2.5 3 10�62

SOCS1 IFN-g 1.6 3 10�42 1.6 3 10�42

SOCS3 TNF-a 9.0 3 10�62 3.6 3 10�55

SRC TNF-a 2.3 3 10�57 4.3 3 10�57

STAT2 IFN-b 4.3 3 10�55 3.8 3 10�55

TNFAIP3 TNF-a 2.7 3 10�59 4.9 3 10�59

TNFSF10 IFN-b 2.3 3 10�58 9.9 3 10�59

TNFSF13B IFN-b 1.7 3 10�57 1.0 3 10�57

Theunion set of 44genes asselected for eachcytokine stimulususing linear

support vectormachine (SVM)approachesandpaired t testswith respect to

the null control. The q values for each cytokine as compared to the Null

(paired t tests)andwithin the fourcytokines (multi-groupANOVA)areshown.
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were based on the complete 572 gene set versus the selected 44

gene set revealed a higher score with reduced dimensionality of

the feature list and a focus on those most highly discriminating

genes (Figure 1D). While our analyses revealed specific cytokine

gene signatures, there was modest overlap in the induced gene

lists when the stimulation conditions were compared to the null

(Figure 1E). Hierarchical clustering of the filtered gene list dis-

played the unique and overlapping gene expression for the

four cytokine groups (Figure 1E).

To examine the intersection among cytokine-induced genes,

we first analyzed the induction of IFN-b, IFN-g, IL-1b and

TNF-a gene expression. While none of the four cytokines trig-

gered high levels of type I or type II IFN expression (Figure 2A),

IL-1b and TNF-a both induced high expression of IL-1b mRNA,

and all four cytokine stimuli induced modest expression of

TNF-a (Figure 2A). These data suggest potential cross-talk

among the pathways and highlight a strong feed-forward inter-

cellular spread of IL-1b signaling. While this has been previously

shown (Dinarello et al., 1987), there is no mechanistic under-

standing of how IL-1b activates the inflammasome and triggers

caspase-1 activation. Unexpectedly, this analysis revealed two

outlier individuals who showed high expression levels of IL-

1b-induced IFN-g (marked by red and blue dots, Figure 2A).

To establish if the observed high levels of IFN-g expression re-

sulted in higher protein secretion, we re-analyzed our previously

published protein dataset (Duffy et al., 2014) generated using

samples from the same donors and indeed, the two individuals

showed the highest levels of IFN-g protein in the culture

supernatants (Figure 2B). The presence of recombinant protein

that was used as the stimulus restricted the interpretation of

potential positive feedback loops for the given protein (these

data points are masked by a gray box, Figure 2B). In addition

to the induction of IFN-g by the two outlier individuals, we also

observed higher expression of several IFN-g-induced genes,

as compared to the other donors studied (Figures 2C–2E).

Together, these data support the concept that the induced

innate responses include the spreading of signals through cyto-

kine feedback loops and potential cross-talk among the inter-

cellular pathways.

Variable Responses to TLR andMicrobe Stimulation Are
Captured by Induced Cytokine Response
During vaccination or acute infection, the immune system is

exposed to agonists that stimulate Toll-like receptor (TLRs)

signaling. In such conditions, small numbers of cells are

engaged, triggering in turn the production of cytokines that

spread the inflammatory response. To test this concept, we eval-

uated whether the induced transcriptional responses to the four

effector cytokines are capable of capturing the diversity of seven

well-defined TLR agonists (Duffy et al., 2014): FSL-1 (FSL, also

known as Pam2C) that engages the TLR2-TLR6 heterodimer;

poly IC (pIC) that engages TLR3; lipopolysaccharide (LPS) that

engages TLR4; flagellin (FLA) that engages TLR5; gardiquimod

(GARD) that engages TLR7; R848 that engages both TLR7 and

TLR8; and CpG-2216 oligonucleotide (ODN) that engages

TLR9. Limiting doses of the respective agonists were selected

to more closely reflect in vivo responses and to ensure that we

were working within the linear range of physiological responses



Figure 2. Interactions and Outlier Responses among the Cytokine-Induced Gene Expression Signatures

(A–D) Whole blood from 25 healthy donors was stimulated using the Null, IFN-b, IFN-g, IL-1b, and TNF-a stimulation conditions. mRNA gene expression (A),

absolute nCounts, or induced protein expression (B) are plotted for each of the four genes or gene products: IFN-b1, IFN-g, IL-1b, and TNF-a (N.T. signifies not

tested for IFN-b protein; gray shaded boxes mask those protein assays that are detecting the input stimulus in the TruCulture tube). mRNA expression for the

most differentially expressed gene is shown (C), one per cytokine stimulus as reported in Table 1 gene list. Top IFN-g-induced gene expression is shown for the

Null (gray) and IL-1b (purple) stimuli (D). Data are represented as box-whisker Tukey plots. Dotted lines indicate the median value for the Null stimulation. Two

individual outliers (identified by their induction of IFN-g expression in response to IL-1b stimulation) are indicated using blue and red circles, respectively.

(E) Cytokine stimulation does not induce expression of IFN-a genes. Box-whisker Tukey plots of IFN-a2 and IFN-a1/13 mRNA expression following stimulation

with NULL, IFN-b, IFN-g, IL-1b, and TNF-a. Dotted line indicates median null value.
(please refer to Duffy et al., 2014 or http://www.milieuinterieur.

fr/en for details on the dose and source of these reagents). To

assess potential similarity in gene expression, we projected the

data from each of the seven TLR stimuli onto a fixed PCA coor-

dinate, which was defined by the eigenvectors and eigenvalues
of the optimized PCA of the four cytokine-induced mRNA

expression data (44 genes defined in Figure 1C). Strikingly, two

of the TLR stimuli clustered with a defined cytokine—FLA and

FSL vectors both projected onto the IL-1B cluster (Figures S4A

and S4B). ODN eigenvectors projected into the IFN-b quadrant,
Cell Reports 16, 2777–2791, September 6, 2016 2781
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Figure 3. TLR-Induced Gene Expression Can Be Represented as a Function of Cytokine-Induced Gene Signatures

(A) Correlation circles of unit length were constructed using the 44 gene set and PCA loadings were obtained using the gene expression dataset from the four

cytokine stimuli (as defined in Table 1). The vectors for TLR-induced gene expression signatures were generated from the median value for the 25 donors,

projected onto the correlation circles across the four PC.

(B) IFN-b1, IFN-g, TNF-a, and IL-1b gene expression nCounts are shown for the Null and TLR stimulation conditions. Data are represented as box-whisker Tukey

plots. Dotted lines indicate the median value for the Null stimulation. Two individual outliers (identified by their induction of IFN-g expression in response to IL-1b

stimulation, Figure 2A) are indicated using blue and red circles, respectively.
with an inter-donor variance in the intensity of gene expression

(Figure S4A), which was consistent with our previous study of

induced proteins. This analytical approach can be further

explored using the online user interface (http://www.synapse.

org/MilieuInterieur, http://dx.doi.org/10.7303/syn7059574).

We next represented the data on a correlation circle, as an

alternative for visualizing the relationships among stimuli (Fig-

ure 3A), allowing us the projection of all TLR stimulation condi-

tions across the four PC axes. When two stimulation vectors

are close to the unit circle and are proximal to each other, then

they are positively correlated (e.g., FLA and FSL). By contrast,

if they are orthogonal to each other, they are not correlated
2782 Cell Reports 16, 2777–2791, September 6, 2016
(e.g., FLA and R848). Alternatively, when a stimulation vector is

close to the center (e.g., LPS in PC1 versus PC2), it means that

information is carried in the other axes (e.g., in the case of LPS

almost all variance is carried by PC3 and PC4). Collectively,

these data suggest that FLA- and FSL-induced transcriptional

signatures are highly correlated to the IL-1b stimulation

response; pIC, GARD, R848, and ODN are correlated with

type I or type II IFN stimulation; and LPS is intermediate between

the two. These results were consistent with the TLR induced

expression of IFN-b1, IFN-g, IL-1b, and TNF-a (Figure 3B). One

unanticipated result was the similarity between FLA and FSL

and the IL-1b gene expression signature. In the case of FLA,

http://www.synapse.org/MilieuInterieur
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we suggest this may be occurring due to the engagement of the

intracellular sensor NLRC4, in turn activating caspase-1 (Gay

et al., 2014); however, the mechanisms underlying FSL activa-

tion of the inflammasome also remains uncharacterized.

Notably, these analyses also identified the two outlier individuals

discussed above, who showed high expression levels of FLA-

induced IFN-g (blue and red dots, Figure 3B).

We applied the same approach to characterize several less

well-studied agonists. These included whole b-glucan particles

(WGP) derived from Saccharomyces cerevisiae, known to

engage Dectin-1 and lacking TLR-stimulating activity (Li et al.,

2007); lipoarabamanin (LAM), a component of mycobacterial

cell walls and an inducer of TLR2; and calcium pyrophosphate

dihydrate crystals (CPPD), the etiological agent of pseudogout

(Martinon et al., 2006), and a stimulator of NLRP3. Consistent

with inflammasome activation, CPPD mapped to the IL-1b clus-

ter, and similar to FSL1, we demonstrate that the LAM-induced

gene expression overlaid the IL-1b gene set (Figure S4B). By

contrast, WGP induced an mRNA expression signature that pro-

jected between IL-1b and TNF-a. Extension of this method may

support the classification of unknown adjuvants or innate stimuli.

Next, we performed unsupervised PCA on the TLR-stimulated

gene expression data using the entire 572-gene set (Figure 4A).

The first two PCs, capturing 44% of the total variance, segre-

gated all TLR stimuli with the exception of FLA and FSL (shown

to have similar gene expression patterns), and to a lesser extent

LPS and R848. The clustering achieved with the entire dataset

was then compared to a PCA plot built using the 44-gene signa-

ture, selected for the four effector cytokines (Table 1). Strikingly,

the vectors built from the cytokine-gene set fully captured the

diversity of responses among the TLR stimuli (Figure 4B). More-

over, the cytokine-optimized gene set provided improved defini-

tion of the clusters, as indicated by a higher silhouette scores

(Figure 4C). This is most evident for the improved discrimination

of LPS from R848 (Figure 4B, see PC2; and an increase in the

median silhouette score from 0.26 to 0.46 for LPS and from

0.11 to 0.35 for R848 samples, Figure 4C). These observations

support the hypothesis that, in situations of limited agonist

concentration and heterogeneous cell types, the characteristic

TLR gene signatures can be identified by a limited set of

cytokine-induced genes. From the perspective of population-

based studies, this introduces the concept that a handful of

highly discriminatory gene expression responses are sufficient
Figure 4. Distinct and Variable Response to TLR Agonist and Microbia

Signature

(A and B)Whole-blood stimulation was performed on 25 healthy donors using TruC

(dark blue), GARD (orange), R848 (brown), and ODN (pink). Principle component

PC1 versus PC2 (the percentage of variance captured by each PC is indicated). A

set of 44 cytokine-induced genes (from gene lists reported in Table 1) (B), PC1 v

(C) Silhouette scores were determined for each sample based on kmeans clusterin

a silhouette score of 0.2 (considered a strong fit). The median silhouette score fo

(D and E) Whole-blood stimulation was also preformed using HKHP (gray), HKLR

(yellow), and SeV (red). PCA was used to project mRNA expression data from 572

data from 44 genes.

(F) Silhouette scores were determined for each sample based on k means cluster

and SeV were mixed among two clusters (not depicted); and two samples were m

44-gene set (not depicted). The red-line indicates a silhouette score of 0.2 (conside

the 44-gene set it was 0.26.
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to distinguish the transcriptional landscape activated by TLR

pathways.

To test the robustness of this prediction, we subsequently

evaluated the gene expression patterns induced by whole

microbes, first using the entire 572-gene set (Figure 4D).

The microbes included heat-killed Escherichia coli O111:B4

(HKEC), Staphylococcus aureus (HKSA), Lactobacillus rhamno-

sus (HKLR), Helicobacter pylori (HKHP), Candida albicans

(HKCA), a clinical preparation of live bacillus Calmette-Guerin

(BCG), H1N1 attenuated influenza A/PR8 (IAV), and Sendai virus

(SeV). The first three principal components, capturing 56%of the

total variance, segregated samples from the viral stimuli and

HKEC from the other microbes in PC1; HKHP was separated

by PC2; and the remaining microbes falling along PC3 with

HKCAbeing distinguishable fromHKLR, HKSA, andBCG. Again,

we demonstrated improved clustering when using the 44-gene

set, as defined by the response to the four effector cytokines

(Figure 1B,C). Strikingly, when using the 44-gene set, the vari-

ance captured by the first three principle components reached

95% (Figure 4E). Indeed, even with whole microbe stimula-

tion—representing a higher level of biological complexity due

to the activation of multiple signaling pathways—we obtained

improved silhouette scores for k-means clustering across all

stimuli when the PCA was based on the 44-gene set (Figure 4F).

For example, the clustering of HKHP samples improved from a

median silhouette score of 0.27 to 0.52, when applying the

selected 44-gene set in place of the complete 572 genes.

Notably, HKLR, HKSA, and BCGwere less distinguishable, likely

a result of common agonist activity and similar levels of induced

cytokines. IAV and SeV also co-segregated for similar reasons.

Nonetheless, a doubling of themedian silhouette score indicated

that, here too, a focused feature list improved clustering of the

data. In light of these results, we conclude that a standardized

sample collection combined with precise measurement of

induced gene expression supports a massive reduction in the

dimensionality of the data space, while preserving the ability to

discriminate the inflammatory trigger as well as the variability

among human donors.

Inter-individual Variable Gene Expression Supports
Tracing of Cytokine Loops
We next extended the concept of correlation among the stim-

ulation conditions to shed light onto possible cytokine loops
l Stimulation Can Be Captured Using the Cytokine-Induced 44-Gene

ulture systems pre-loaded with FSL (maroon), pIC (green), LPS (light blue), FLA

analysis (PCA) was used to project mRNA expression data from 572 genes (A),

parallel PCAwas constructed using themRNA expression data from the filtered

ersus PC2 (the percentage of variance captured by each PC is indicated).

g (k = 7). Samples are plotted according to TLR stimulus. The red-line indicates

r 572-gene set was 0.19; and for the 44-gene set it was 0.45.

(brown), HKSA (blue), HKEC (purple), HKCA (gray-green), BCG (orange), IAV

genes (C); and the parallel PCA was constructed using the mRNA expression

ing (k = 8). Samples are plotted according to microbial stimulus. Note that IAV

isclustered using the 572-gene set versus five samples misclustered using the

red a strong fit). Themedian silhouette score for 572-gene set was 0.18; and for
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involved in individual gene expression. This approach provides

an exploratory analysis of possible cell-to-cell interactions that

can be tested in future experimental studies. Spearman correla-

tion matrices and hierarchical clustering, based on a connected

correlation dissimilarity metric, were performed for each gene,

and results were bootstrapped to ensure the identified correla-

tions were robust. Using these outputs, we identified cases

where the variable responses to TLR or microbe stimulations

could be explained by the inter-individual gene expression vari-

ance observed when using one of the four cytokine stimuli. To

illustrate this observation, the dendrogram depicting the clusters

of Spearman correlations and a table indicating the respective rs
coefficients are shown for TNFSF10 (Figure 5A). A cut-off value

of 2-fold expression change greater than the null condition was

utilized for inclusion of stimuli in the cluster. Interestingly, the

viral stimuli clearly clustered with type I IFN stimulation, with

SeV showing a high correlation with IFN-b-induced TNFSF10

(rs = 0.82); whereas GARD and R848 clustered with IFN-g

(rs = 0.7 and 0.75, respectively) (Figures 5A and 5B). As a second

example, IRAK3 is shown, illustrating distinct clustering of

bacterial/TLR stimuli with TNF or IL-1b (Figures 5C and 5D).

Schematic depictions of the putative stimulus-induced cyto-

kine-mediated expression of TNFSF10 or IRAK3 are shown

with dotted line arrows provided for illustrative purposes. This

analytical approach allows us to predict the distinct cytokine

loops that drive common gene expression following stimulation

by TLR agonists or microbes. While this modeling approach to

population-based data must be experimentally validated, we

highlight the possibility that inter-individual variance can be uti-

lized as a means to identify causal pathways driving gene

expression, which will support future experimental inquiry.

Microbial Gene Expression Is Defined by Lymphocyte-
Derived Cytokines
Although the four cytokines studied herein represent major

effector pathways in host response and disease pathogenesis,

we were cognizant of additional upstream factors that help

to specify the inflammatory reaction. To identify other poten-

tial effector cytokines, we generated a list of genes upregu-

lated by each stimulus as compared to the null condition

(stimulus > null, paired t test q < 10�3) and then merged the re-

sulting gene lists for the four cytokines, the seven TLR, and the

eight microbial stimuli. A Venn diagram depicts the overlap and

intersections in gene expression for these three groups, respec-

tively (Figure 6A). Additionally, we calculated the median gene

expression for each stimulus and generated heat maps, clus-

tering by both genes and samples, using either the set of genes

that were expressed after microbial but not cytokine stimulation

(Figure 6B); TLR but not cytokine stimulation (Figure S6A); and

microbial but not TLR stimulation (Figure S6B). Strikingly, the
Figure 5. Correlation among Variable Stimulus-Induced Gene Express

Gene expression data from all 23 stimulation conditions were used to generate

bootstrapping. The dendrograms shown depict clustering of stimuli based on Spe

matrix indicates the respective pairwise rs coefficients. Scatter plots for indicate

single individual of the 25 healthy donors tested for TNFSF10 (B) or IRAK3 (D). R

imately unbiased (au) p values, reported as percentage for 1,000 sampled den

schematics for stimulus-driven cytokine-induced gene expression is proposed u
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complex stimuli induced a subset of genes indicative of lympho-

cyte activation. This subset of genes included: (1) transcription

factors such as FoxP3 (highly induced after bacterial stimula-

tion), EOMES (induced by HKCA) and GATA3 (induced by

BCG); (2) cytolytic effectors such as GZMA (highly induced by

HKEC); and (3) anti-microbial genes such asNOS2 (induced after

bacterial stimulation), DEFB103A (induced by BCG) and HAMP

(highly induced by HKEC) (Figure 6B). Additionally, we detected

the differential induction of 18 cytokines, which included IL2

(induced by HKSA, BCG, HKCA, IAV, and SeV), CSF2 (highly

induced by HKCA), and IL22 (induced after bacterial and

HKCA stimulation) (Figure 6C). As indicated by the comparison

with Staphylococcal enterotoxin B (SEB) stimulation and consis-

tent with the presence of microbial antigen-specific T cells within

the repertoire of healthy donors (Becattini et al., 2015; Geiger

et al., 2009), these cytokine genes likely reflect the activation

of lymphocyte subsets (Figure 6C). The characterization of these

lymphocyte-derived cytokines may further establish the role of

feed-forward cytokine loops in the deconvolution of microbial-

induced gene signatures.

DISCUSSION

In this study, we aimed at testing if standardized whole-blood

stimulation systems can support the identification of a handful

of genes that are capable of deconvoluting complex responses

to immune stimulation. We utilized medically relevant stimuli to

determine their inflammatory signatures and, in doing so, estab-

lished the degree of naturally occurring variation present in a

population of well-defined healthy donors of European descent.

The definition of host immune responses to adjuvants andmicro-

bial agents, and subsequent characterization of inter-individual

variability in the human population, is of major fundamental inter-

est and provides the necessary foundation for understanding hu-

man health and disease pathogenesis. Although functional tests

are routinely used in laboratory investigation (Folds and Schmitz,

2003), the standardization of such assays has been challenging.

While whole-blood assays are more biologically relevant and

introduce less experimental bias than, for example, PBMC stim-

ulation, they are not without technical challenges in particular

due to the high levels of globin RNA and enzyme-inhibiting com-

pounds (e.g., heparin interference of reverse transcriptase)

(Chaussabel et al., 2010). Previous efforts have focused on

removing the globin RNA before downstream analysis, however,

these processes can introduce, in turn, higher levels of technical

variance as compared to what was achieved with our data gen-

eration pipeline (Shin et al., 2014). Specifically, the innovation

brought forward in this study is an automated single-step RNA

extraction method from whole blood, which minimized pre-

analytical bias and generated highly reproducible results when
ion Helps to Trace Cytokine Loops

Spearman correlation matrices and hierarchical cluster analysis followed by

arman correlations for TNFSF10 (A) or IRAK3 (C) and the associated triangular

d stimulation pairs are shown. Each dot represents the absolute nCount for a

ed numbers at the intersection of the dendrogram branches indicate approx-

drograms. Color scale on tables indicates strength of correlation. Proposed

sing indicated cut-off for rs.
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using a gene hybridization read-out. These solutions are essen-

tial for multicenter population-based studies, as well as for as-

says with ambitions for clinical deployment.

Using the reference data presented herein, we tested the

hypothesis that responses to TLR ligands or whole microbes

can be captured by the transcriptional signature of key effector

cytokines. We tested a total of 23 stimulation systems, all built

into whole-blood syringes for point of care sampling. Using

linear SVM learning, it was possible to identify a 44-gene

set, selected based on their ability to differentially cluster

cytokine-induced genes. Strikingly, these same genes, when

applied to the stratification of responses to TLR ligands or mi-

crobes, resulted in improved discrimination among the stimuli

as indicated by a marked improvement in silhouette scores.

In the era of an increased use of whole-genome transcrip-

tional profiles, our results suggest that limiting the pre-analyt-

ical bias introduced by cell separation and non-standardized

stimulation protocols may be more important than obtaining

greater numbers of measured genes. In addition to sample

collection and data analysis standardization, we minimized

intrinsic variability by the recruitment of donors of Western

European ancestry (third generation born in Metropolitan

France). Furthermore, we minimized pre-analytic or environ-

mental sources of variability by applying highly precise inclu-

sion and exclusion criteria (Thomas et al., 2015). To restrict

other sources of variability, in addition to the standardization

of the assay systems, all donors were sampled at the same

time of day (09:00–11:00), during the same week, and in the

same location. Such a reliable monitoring of induced immune

gene expression responses permitted the classification of in-

flammatory and host immune responses based on the variance

observed in healthy donors.

In addition to defining detailed healthy reference ranges to be

considered in future clinical studies, this work permitted the

identification of a number of outlier responses. This included

two individuals that responded to FLA or IL-1b by producing

IFN-g and in turn the induction of IFN-g-stimulated genes.

Following from this observation, we extended the approach of

tracing cytokine loops and gene expression pathways, using in-

ter-individual variance and correlation among the stimulation

signatures as a means to deconvolute complex transcriptional

responses. This approachmay also support the future classifica-

tion of unknown adjuvants, innate stimuli, new pathogenic

agents or the stratification of disease and treatment response.

If extended to the study of disease states, it may be possible

to classify, for example, subsets of rheumatoid arthritis patients

that are responsive to IL-1b versus TNF-a blockade (Gibbons

and Hyrich, 2009; McInnes and Schett, 2007).
Figure 6. Microbial-Induced Lymphokines Are Absent from TLR and C

(A) Gene expression data from all 23 stimulation conditions were used to generate

10�3). The union sets of cytokine (IFN-b, IFN-g, IL-1b, TNF-a); TLR (FSL, pIC, LPS

BCG, IAV, SeV) were generated. The Venn diagram indicates the number of sha

(B) Hierarchical clustering of the donors and genes based on the 105 genes pres

gene expression value was used for each stimulus, with variables log-transforme

for clustering of genes not shown.

(C) Representative gene expression data are shown for IL2, CSF2, and IL22 fo

reference. Data are represented as box-whisker Tukey plots. Dotted lines indica
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This reference dataset and the applied analytical approach

offers a useful resource to the community, nevertheless, several

specific limitations should be highlighted. First, some of the em-

ployed TLR stimuli may engage secondary pathways in addition

to their commonly ascribed receptors. Notably, the observation

that FLA is highly correlated with the IL-1b-induced gene signa-

ture suggests that it may also trigger NLRC4 within the whole-

blood stimulation systems. This may occur within neutrophils,

which express high levels of the NLRC4 inflammasome and

release IL-1b (Chen et al., 2014). If correct, it would also help

to explain why, despite the high prevalence of dominant-nega-

tive forms of TLR5 in Europeans (Barreiro et al., 2009; Hawn

et al., 2003), all 25 donors showed an induced response after

FLA stimulation (Barreiro et al., 2009). Alternatively, TLR sensor

pathways on platelets and neutrophils may be unique in their

ability to engage caspase-1 (Hayashi et al., 2003). We also

observed that IAV and SeV were highly correlated with pIC, sug-

gesting that the latter is engaging RIG-I like receptors (RLRs) in

addition to TLR3. We also acknowledge that, in the natural

setting, human immune responses typically occur inmucosal tis-

sues and, as such, stromal cells and tissue resident immune

populations such as macrophages and ILCs may need to be

considered to fully apply our dataset to physiologic and patho-

logic responses. Lastly, our analyses consider a single analytical

time point only, thus capturing a snapshot of the complexity

inherent in dynamic immune responses.

Finally, it is our aim with this resource paper to highlight the

growing need to make data more accessible and easier to

explore. In line with recent efforts (Gorenshteyn et al., 2015;

Speake et al., 2015), we have thus developed an online R-Shiny

application software that will allow readers to fully query the da-

taset based on their specific questions. This application software

was built as a direct companion to the presented analyses with

publically available R-scripts and downloading options for

gene expression data. In sum, the data resource presented

here and the available online tools provide a foundation for asso-

ciation studies, kinetic analyses, and in vivo mechanistic exper-

imentation. For example, it remains to be established how the

inter-individual variation in gene expression that we identified

here is accounted for by host genetic variants (i.e., expression

quantitative trait loci [eQTLs]), specifically in cases where gene

expression variation is altered upon activation with certain im-

mune stimuli (i.e., response/interaction eQTLs). Conceptually,

the strategy to trace inter-cellular cytokine driven gene expres-

sion may support such future eQTL association studies, espe-

cially in cases where inter-cellular trans-eQTL are identified.

From a practical viewpoint, the tools will support a path toward

more targeted immune monitoring from whole blood, enabling
ytokine Gene Expression Signatures

stimulus-induced signatures (stimulus > null, paired t test with q value cut-off of

, FLA, GARD, R848, ODN); and microbes (HKHP, HKLR, HKSA, HKEC, HKCA,

red and unique genes among the three groups of stimuli.

ent in the union set of microbes but not cytokines was performed. The median

d, mean-centered per donor, and scaled to unit variance. NB, the dendrogram

r each stimuli, as well as Staphylococcal enterotoxin B (SEB) stimulation for

te the median value for the Null stimulation.



the use of standardized approaches that capture the common

variation within the human population.

EXPERIMENTAL PROCEDURES

Donors

Samples were obtained as part of the Milieur Intérieur Healthy Donor Cohort

(https://www.clinicaltrials.gov/; NCT01699893). The study protocol was de-

signed and conducted in accordance with the ethical principles of the Decla-

ration of Helsinki and Good Clinical Practices as outlined in the ICH Guideline

for Good Clinical Practices. The data were collected under pseudo-anony-

mized conditions: the identity of the subject is coded in a way that does not

allow third-party persons to detect the identity of the person. All subjects (12

male, 13 female) aged 30–39 years old, gave informed consent and were

considered as healthy based on medical history, clinical examination, labora-

tory results, and electrocardiography (ECG). More specific details on criteria to

define healthy can be found in previously published work (Thomas et al., 2015).

TruCulture Stimulation

TruCulture tubes were prepared in batch with the indicated stimulus, resus-

pended in a volume of 2 ml buffered media and maintained at �20�C until

use. Blood was obtained from the antecubital vein using a 60 ml syringe

containing sodium-heparin (50 IU/ml final concentration). Within 15 min of

collection, 1 ml of whole blood was distributed into pre-warmed TruCulture

tubes, inserted into a dry block incubator, and maintained at 37�C (+/� 1�C),
room air for 22 hr (+/� 15 min). After incubation, a valve was inserted to sepa-

rate cells from the supernatant and to stop the stimulation reaction. Upon

removal of the liquid supernatant, cell pellets were resuspended in 2 ml Trizol

LS (Sigma), vortexed for 2 min, and rested for 10 min at room temperature (RT)

before �80�C storage.

High-Throughput Standardized RNA Extraction

Samples were randomized and extracted in groups of 95. Cell pellets in Trizol

LS were thawed on ice 60 min prior to processing. To complete thawing and

RNA release, tubes were vortexed twice for 5 min at 2,000 rpm. Before pro-

cessing, a centrifugation (3,000 3 g for 5 min at 4�C) of the thawed samples

was performed to pellet the cellular debris generated during the Trizol lysis.

The barcoded tubes were loaded in the rack module of the Freedom EVO plat-

form (TECAN) and scanned for sample traceability. For extraction, a modified

protocol of the NucleoSpin 96RNA tissue kit (Macherey-Nagel) was developed

and adapted to the Freedom EVO integrated vacuum system. The detailed

script for the operation of the TECAN system is provided online (http://www.

milieuinterieur.fr/en). In brief, 600 ml of clarified phase of the Trizol lysate was

transferred to a deep well plate preloaded with 900 ml of 100% ethanol. The

binding mixture was transferred into the silica membrane plate. The columns

were washed with buffers MW1 and MW2 (32) and RNA eluted into 0.5 ml

2D barcoded tubes (ThermoScientific) using 60 ml RNase-free water. As an in-

ternal control of the extraction process, a tube containing a defined quantity of

spiked RNA was included in each run. To avoid unnecessary freeze and thaw

of the RNA, distinct aliquots for quality control and gene expression analysis

were prepared, and all aliquots were frozen at �80�C until use.

RNA Quality Controls

RNA concentration was estimated using Qubit RNA HS Assay Kit (Life Tech-

nologies) according to the protocol provided by the manufacturer. An auto-

mated RNA integrity assessment was performed using the Standard RNA

Reagent Kit on a LabChipGX (Perkin Elmer). The RNA quality score (RQS)

was calculated using the LabChip System software, and all samples with a

RQS greater than four were processed for gene expression analysis.

Selection Criteria for Gene Expression Analysis

NanoString nCounter, a hybridization-based multiplex assay, was selected

after comparison with multiple gene expression technologies (microarray,

qPCR-based methods) (Table S1). All assays were performed at the genomic

platform (Institut Curie), with the exception of the cross platform control com-

parison performed at Institut Pasteur, Paris. The Human Immunology v2 gene
code set was selected as it covers 25 immunology-related gene networks as

illustrated by the use of KEGG charts (Figure S2). The code set contains a total

of 594 probes (15 correspond to housekeeping genes), of which 572 probes

were included in downstream analysis after removing probes mapping to mul-

tiple genes and probes aligning to polymorphic regions with greater than two

SNPs (Table S2). To this end, the probes were mapped against the human

genomic sequence (GRCh37/hg19) with GSNAP (Wu and Nacu, 2010), a

splice-aware aligner. A total of 573 out of 594 probes were mapped with

100% identity to the genome. Twelve probes mapped with one to two mis-

matches in the middle of the sequence, eight probes were misaligned in the

first/last 1–9 bp, and one probe did not map at all (PECAM1 located on

HG183_PATCH). The misaligned probes were realigned manually using

BLASTN against Ab-initio cDNAs database. Of the 594 probes, 15 mapped

to more than one genomic location (see Table S2). We removed from further

analysis KIR_Activating_Subgroup_1 probe, which mapped to three different

genomic locations, as well as three other KIR probes that mapped to mul-

tiple locations: KIR_Activating_Subgroup_2, KIR_Inhibiting_Subgroup_1, and

KIR_Inhibiting_Subgroup_2. Bioconductor biomaRt package (Durinck et al.,

2005) version 2.24.0 was used to query Ensembl (release 75) (Flicek et al.,

2014) and retrieve exonic variants that mapped to the same regions as

the NanoString probes. We considered only SNPs with minor allelic fre-

quency >0.05 (1000 Genomes Project). Forty-eight probes showed the pres-

ence of one to two SNPs in their sequence. HLA-DRB1, HLA-DQA1, and

HLA-DQB1 probes contained 4, 9, and 13 SNPs, respectively, and were there-

fore removed from further analysis.

Gene Expression Analysis

Total mRNA were diluted with RNase-free water at 20 ng/ml in the 12-strip pro-

vided by NanoString. We analyzed 100 ng (5 ml) of total RNA from each sample

using the Human Immunology kit v2 according to manufacturer’s instructions.

Each sample was analyzed in a separate multiplexed reaction including in

each, eight negative probes and six serial concentrations of positive control

probes. Negative control analysis was performed to determine the back-

ground for each sample. Of note, we observed variable expression of two

negative control probes (NEG B, NEG F), which cross-reacted with bacterial

nucleic acid present in two of the TruCulture systems (HKSA and BCG, respec-

tively, Figures S1D and S1E), and thus these probes were not used for data

normalization. Data was imported into nSolver analysis software (version

2.5) for quality checking and normalization of data. A first step of normalization

using the internal positive controls permitted correction of potential sources of

variation associated with the technical platform. To do so, we calculated for

each sample the geometric mean of the positive probe counts. A scaling factor

for a sample was a ratio of the average across all geometric means and the

geometric mean of the sample. For each sample, wemultiplied all gene counts

by the corresponding scaling factor. Next, for each sample we calculated the

background level as the median +2 SD across the six negative probe counts.

For each gene in a sample, we subtracted the background level. Finally, to

normalize for differences in RNA input we used the samemethod as in the pos-

itive control normalization, except that geometric means were calculated over

four housekeeping genes (RPL19, TBP, POLR2A, and HPRT1). These genes

were selected using geNorm method (Vandesompele et al., 2002), an estab-

lished approach for identification of stable housekeeping genes, from the 15

candidate genes provided by NanoString.

Statistical Analysis, Data Visualization, and Software

Principal component analysis (PCA) or singular value decomposition (SVD)was

used to decompose the data matrix in a way that is amenable for dimension

reduction (Alter et al., 2000). The decompositionwas used to orthogonally proj-

ect both the rows and the columns of the data matrix into lower dimensional

space in an optimal way—optimal signifying the retention of as much of the

original variance in the dataset as possible. For a comprehensive overview of

PCA and the exploratory analysis using dual PCA and the accompanying

PCA biplots, we refer to Fontes (2012). Before applying PCA, the variables

(mRNA expression levels) were log-transformed, mean-centered per donor,

to avoid inter-donor variability obscuring inter-stimuli responses, and finally

the variables were scaled to unit variance. The mean-centering per donor is

in accordance with the paired structure in the data and paired t tests or
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ANOVA were performed throughout. Scaling to unit variance prevents large

variances in the data from obscuring the correlation structure in the data. Q

values, which are defined as false discovery rate (FDR)-adjusted p values (Ben-

jamini and Hochberg, 1995), were used to define statistical significance.

Correlation circles were generated by computing themedian value across the

25 donors, for each of the considered 44 genes; we then transposed the data

matrix to consider the four stimulation conditions as the four PCA dimensions;

finally, the vectors representing the TLR stimuli were projected onto the four-

dimensional PCA. The respective 2D PCA projection plots were made with the

R package ‘‘FactoMineR’’ (version 1.28) to compute PCA scores and projected

coordinates. Silhouette analysis was used to study the separation distance

among the TLR and microbial stimuli. K means clustering was performed using

the Open CV library (Bradski and Kaehler, 2008); with settings equal to 100 iter-

ations and 500 attempts and the silhouette scores were computed (Bradski and

Kaehler, 2008; Steinhaus, 1956). Cluster number was selected based on the

number of stimuli represented in the PCA (k = 7 for TLR, k = 8 for microbes).

Note, silhouette coefficients near +1 indicate that the sample is far away from

the neighboring clusters; a valueof 0 indicates that the sample is on or very close

to the decisionboundary between twoneighboring clusters, and negative values

indicate that those samples might have been assigned to the wrong cluster.

Bootstrappedhierarchical clusteringanalysiswasperformedusing the ‘‘pvclust’’

R package (version 1.3-2) using a Spearman-based dissimilarity metric. One

thousand treeswere sampled to evaluate the robustness of each cluster. Corre-

lation matrices were plotted using the R graphics package ggplot2 (version

1.0.0). Plotswere exported from theQlucoreOmicsExplorer 3.1 or created using

the ggplot2 package (version 1.0.0) on the R platform (version 3.1.1).

Stimulus signatures, consisting of gene lists specific for each of the four

cytokines, were created by training a support vector machine (SVM) for each

individual stimulus versus null. This approach was used to define stimulus sig-

natures set by a discrete number of variables. In order to discover reasonably

complex gene interaction networks among the four stimuli, SVMs were opti-

mized from 12–57 gene subsets (�2%–10% of the total gene number). For

all four cytokine stimuli, the optimal classifier determined by the SVM cross

validation scheme corresponded to the smallest gene set size. The identified

gene lists had perfect accuracy upon ten repeated complete SVM test runs.

This shows that a small number of selected variables can predict the specific

stimulus used. The small overlap between the established stimulus signatures

indicates that the selection strikes a reasonable balance between capturing

the complexity in the data and at the same time identifying those important in-

dividual genes. The open source C++ software library OpenCV was used to

build and evaluate the SVMs (Burges, 1998; Chang and Lin, 2011). For com-

parison, a kNN classifier was also tested, using the implementation in the

OpenCV library with default parameter settings, which gave exactly the

same stimulus signatures.

R Shiny (Interactive Web Application) Development

To complement thismanuscript, we provide an interactive web application that

allows exploration of the dataset presented in this study. The application

presents four different types of analytical visualizations: PCA, boxplots, hierar-

chical clustering, and a searchable reference table. For each visualization, we

provide default settings that match figures presented in the manuscript. Visu-

alization controls enable the user to navigate the entire dataset following their

own scientific interests. The interactive table provides reference values, based

on the 25 healthy donors, which can be directly browsed using a selected

method (median expression values, coefficient of variations or q values from

paired t tests as compared to the Null condition). The application was imple-

mented using the Open Source R platform, Shiny package (version 0.12.2),

ggplot2 package (version 1.0.0), dplyr package (version 0.4.3), and tinyr

package (version 0.3.1). All visualization and analysis methods are accessible

through a web browser, without the need to install any additional software or

possess knowledge of a programming language and is available at https://

www.synapse.org/MilieuInterieur (http://dx.doi.org/10.7303/syn7059574).
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