Skip to Main content Skip to Navigation
Journal articles

Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.

Abstract : Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.
Document type :
Journal articles
Complete list of metadatas

Cited literature [34 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-01367555
Contributor : Marie-Christine Vougny <>
Submitted on : Friday, September 16, 2016 - 1:11:22 PM
Last modification on : Wednesday, October 14, 2020 - 3:57:24 AM

File

1-s2.0-S2211124716310579-main....
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Identifiers

Collections

Citation

Alejandra Urrutia, Darragh Duffy, Vincent Rouilly, Céline Posseme, Raouf Djebali, et al.. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.. Cell Reports, Elsevier Inc, 2016, 16 (10), pp.2777-91. ⟨10.1016/j.celrep.2016.08.011⟩. ⟨pasteur-01367555⟩

Share

Metrics

Record views

1050

Files downloads

656