D. Geschwind, Advances in Autism, Annual Review of Medicine, vol.60, issue.1, pp.367-380, 2009.
DOI : 10.1146/annurev.med.60.053107.121225

G. Huguet, E. Ey, and T. Bourgeron, The Genetic Landscapes of Autism Spectrum Disorders, Annual Review of Genomics and Human Genetics, vol.14, issue.1, pp.191-213, 2013.
DOI : 10.1146/annurev-genom-091212-153431

URL : https://hal.archives-ouvertes.fr/pasteur-01470293

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nature Reviews Neuroscience, vol.511, issue.9, pp.551-563, 2015.
DOI : 10.1016/j.cell.2004.09.011

D. Pinto, E. Delaby, and D. Merico, Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders, The American Journal of Human Genetics, vol.94, issue.5, pp.677-694, 2014.
DOI : 10.1016/j.ajhg.2014.03.018

URL : https://hal.archives-ouvertes.fr/inserm-00986225

N. Krumm, O. Roak, B. Shendure, J. Eichler, and E. , A de novo convergence of autism genetics and molecular neuroscience, Trends in Neurosciences, vol.37, issue.2, pp.95-105, 2014.
DOI : 10.1016/j.tins.2013.11.005

B. Neale, Y. Kou, and L. Liu, Patterns and rates of exonic de novo mutations in autism spectrum disorders, Nature, vol.7, issue.7397, pp.242-245, 2012.
DOI : 10.1038/nature11011

URL : https://hal.archives-ouvertes.fr/inserm-00939274

S. Sanders, M. Murtha, and A. Gupta, De novo mutations revealed by whole-exome sequencing are strongly associated with autism, Nature, vol.478, issue.7397, pp.237-241, 2012.
DOI : 10.1038/nature10945

B. Roak, L. Vives, and S. Girirajan, Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations, Nature, vol.485, pp.246-250, 2012.

K. Samocha, E. Robinson, and S. Sanders, A framework for the interpretation of de novo mutation in human disease, Nature Genetics, vol.43, issue.9, pp.944-503, 2014.
DOI : 10.1038/ng.3050

E. Lim, S. Raychaudhuri, and S. Sanders, Rare Complete Knockouts in Humans: Population Distribution and Significant Role in Autism Spectrum Disorders, Neuron, vol.77, issue.2, pp.235-242, 2013.
DOI : 10.1016/j.neuron.2012.12.029

L. Klei, S. Sanders, and M. Murtha, Common genetic variants, acting additively, are a major source of risk for autism, Molecular Autism, vol.3, issue.1, p.9, 2012.
DOI : 10.1186/2040-2392-3-9

T. Gaugler, L. Klei, and S. Sanders, Most genetic risk for autism resides with common variation, Nature Genetics, vol.460, issue.8, pp.881-885, 2014.
DOI : 10.1016/j.cell.2013.10.020

R. Kelleher and M. Bear, The Autistic Neuron: Troubled Translation?, Cell, vol.135, issue.3, pp.401-406, 2008.
DOI : 10.1016/j.cell.2008.10.017

E. Fernandez, N. Rajan, and C. Bagni, The FMRP regulon: from targets to disease convergence, Frontiers in Neuroscience, vol.7, p.191, 2013.
DOI : 10.3389/fnins.2013.00191

R. Toro, M. Konyukh, and R. Delorme, Key role for gene dosage and synaptic homeostasis in autism spectrum disorders, Trends in Genetics, vol.26, issue.8, pp.363-372, 2010.
DOI : 10.1016/j.tig.2010.05.007

T. Sudhof, Neuroligins and neurexins link synaptic function to cognitive disease, Nature, vol.27, issue.7215, pp.903-911, 2008.
DOI : 10.1038/nature07456

L. Weiss, D. Arking, M. Daly, and A. Chakravarti, A genome-wide linkage and association scan reveals novel loci for autism, Nature, vol.25, issue.7265, pp.802-808, 2009.
DOI : 10.1038/nature08490

P. Prandini, A. Pasquali, and G. Malerba, The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families, Psychiatric Genetics, vol.22, issue.4, pp.177-181, 2012.
DOI : 10.1097/YPG.0b013e32835185c9

M. Melin, B. Carlsson, and H. Anckarsater, Constitutional Downregulation of <i>SEMA5A</i> Expression in Autism, Neuropsychobiology, vol.54, issue.1, pp.64-69, 2006.
DOI : 10.1159/000096040

Y. Cheng, J. Quinn, and L. Weiss, An eQTL mapping approach reveals that rare variants in the SEMA5A regulatory network impact autism risk, Human Molecular Genetics, vol.22, issue.14, pp.2960-2972, 2013.
DOI : 10.1093/hmg/ddt150

K. Cornish and J. Pigram, Developmental and behavioural characteristics of cri du chat syndrome., Archives of Disease in Childhood, vol.75, issue.5, pp.448-450, 1996.
DOI : 10.1136/adc.75.5.448

R. Adams, H. Betz, and A. Puschel, A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis, Mechanisms of Development, vol.57, issue.1, pp.33-45, 1996.
DOI : 10.1016/0925-4773(96)00525-4

Y. Zhou, R. Gunput, and R. Pasterkamp, Semaphorin signaling: progress made and promises ahead, Trends in Biochemical Sciences, vol.33, issue.4, pp.161-170, 2008.
DOI : 10.1016/j.tibs.2008.01.006

J. Hilario, L. Rodino-klapac, C. Wang, and C. Beattie, Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo, Developmental Biology, vol.326, issue.1, pp.190-200, 2009.
DOI : 10.1016/j.ydbio.2008.11.007

Y. Duan, S. Wang, and J. Song, Semaphorin 5A inhibits synaptogenesis in early postnatal-and adult-born hippocampal dentate granule cells al: Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans, Elife Neuron, vol.3, issue.44, pp.4390-4419, 2004.

T. Connor, K. Cockburn, W. Wang, L. Tapia, E. Currie et al., Semaphorin 5B mediates synapse elimination in hippocampal neurons, Neural Development, vol.4, issue.1, p.18, 2009.
DOI : 10.1186/1749-8104-4-18

C. , R. M. , L. Couteur, and A. , Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders, J Autism Dev Disord, vol.24, pp.659-685, 1994.

B. Zhu, C. Chen, and G. Xue, The SEMA5A gene is associated with hippocampal volume, and their interaction is associated with performance on Raven's Progressive Matrices, NeuroImage, vol.88, pp.181-187, 2013.
DOI : 10.1016/j.neuroimage.2013.11.035

E. Koropouli and A. Kolodkin, Semaphorins and the dynamic regulation of synapse assembly, refinement, and function, Current Opinion in Neurobiology, vol.27, pp.1-7, 2014.
DOI : 10.1016/j.conb.2014.02.005

S. De-rubeis, X. He, and A. Goldberg, Synaptic, transcriptional and chromatin genes disrupted in autism, Nature, vol.302, issue.7526, pp.209-215, 2014.
DOI : 10.1038/nature13772

I. Iossifov, O. Roak, B. Sanders, and S. , The contribution of de novo coding mutations to autism spectrum disorder, Nature, vol.43, issue.7526, pp.216-221, 2014.
DOI : 10.1038/nature13908

S. Girirajan, J. Rosenfeld, and G. Cooper, A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay, Nature Genetics, vol.316, issue.3, pp.203-209, 2010.
DOI : 10.1038/ng.534

C. Leblond, J. Heinrich, and R. Delorme, Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders, PLoS Genetics, vol.92, issue.Pt 11, p.1002521, 2012.
DOI : 10.1371/journal.pgen.1002521.s016

URL : https://hal.archives-ouvertes.fr/inserm-00834560