Skip to Main content Skip to Navigation
Journal articles

A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.

Anne-Laure Mosca-Boidron 1, 2 Lucie Gueneau 2 Guillaume Huguet 3, 4 Alice Goldenberg 5 Céline Henry 6 Nadège Gigot 2 Emilie Pallesi-Pocachard 7 Antonio Falace 7 Laurence Duplomb 2 Julien Thevenon 2 Yannis Duffourd 8, 2 Judith St-Onge 2, 9 Pascal Chambon 5 Jean-Baptiste Rivière 8, 2 Christel Thauvin-Robinet 2, 10 Patrick Callier 1, 2 Nathalie Marle 1, 2 Muriel Payet 1, 2 Clemence Ragon 1, 2 Hany Goubran Botros 3 Julien Buratti 3 Sophie Calderari 3 Guillaume Dumas 3, 4 Richard Delorme 3, 11 Nathalie Lagarde 6 Jean-Michel Pinoit 6 Antoine Rosier 12 Alice Masurel-Paulet 10 Carlos Cardoso 13 Francine Mugneret 1 Pascale Saugier-Veber 14 Dominique Campion 14 Laurence Faivre 10 Thomas Bourgeron 3, 4, 15
Abstract : Semaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We then used Sanger sequencing to search for deleterious variants affecting SEMA5A in 142 patients with ASD. We also identified two independent heterozygous variants located in a conserved functional domain of the protein. Both variants were maternally inherited and predicted as deleterious. Our genetic screens identified the first case of a de novo SEMA5A microdeletion in a patient with ASD and ID. Although our study alone cannot formally associate SEMA5A with susceptibility to ASD, it provides additional evidence that Semaphorin dysfunction could lead to ASD and ID. Further studies on Semaphorins are warranted to better understand the role of this family of genes in susceptibility to neurodevelopmental disorders.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-01342825
Contributor : Guillaume Dumas <>
Submitted on : Wednesday, July 6, 2016 - 6:00:14 PM
Last modification on : Saturday, October 3, 2020 - 3:18:42 AM

File

ejhg2015211a.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Anne-Laure Mosca-Boidron, Lucie Gueneau, Guillaume Huguet, Alice Goldenberg, Céline Henry, et al.. A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.. European Journal of Human Genetics, Nature Publishing Group, 2016, 24 (6), pp.838-43. ⟨10.1038/ejhg.2015.211⟩. ⟨pasteur-01342825⟩

Share

Metrics

Record views

548

Files downloads

1133