Y. Mishima, Widespread roles of microRNAs during zebrafish development and beyond, Development, Growth & Differentiation, vol.13, issue.Suppl, pp.55-65, 2012.
DOI : 10.1111/j.1440-169X.2011.01306.x

A. Bronkhorst and R. Van-rij, The long and short of antiviral defense: small RNA-based immunity in insects, Current Opinion in Virology, vol.7, pp.19-28, 2014.
DOI : 10.1016/j.coviro.2014.03.010

V. Vagin, A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline, Science, vol.313, issue.5785, pp.320-324, 2006.
DOI : 10.1126/science.1129333

C. Campbell, Aedes aegypti uses RNA interference in defense against Sindbis virus infection, BMC Microbiology, vol.8, issue.1, p.47, 2008.
DOI : 10.1186/1471-2180-8-47

K. Keene, RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.101, issue.49, pp.17240-17245, 2004.
DOI : 10.1073/pnas.0406983101

D. Galiana-arnoux, C. Dostert, A. Schneemann, J. Hoffmann, and J. Imler, Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila, Nature Immunology, vol.69, issue.6, pp.590-597, 2006.
DOI : 10.1038/ni1335

K. Myles, M. Wiley, E. Morazzani, and Z. Adelman, Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes, Proceedings of the National Academy of Sciences, vol.105, issue.50, pp.19938-19943, 2008.
DOI : 10.1073/pnas.0803408105

I. Sánchez-vargas, Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway, PLoS Pathogens, vol.35, issue.2, p.1000299, 2009.
DOI : 10.1371/journal.ppat.1000299.t001

R. Van-rij, The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster, Genes & Development, vol.20, issue.21, pp.2985-2995, 2006.
DOI : 10.1101/gad.1482006

R. Zambon, V. Vakharia, and L. Wu, RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster, Cellular Microbiology, vol.7, issue.5, pp.880-889, 2006.
DOI : 10.1016/S0092-8674(00)80620-0

M. Horwich, The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC, Current Biology, vol.17, issue.14, pp.1265-1272, 2007.
DOI : 10.1016/j.cub.2007.06.030

J. Martinez, A. Patkaniowska, H. Urlaub, R. Lührmann, and T. Tuschl, Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi, Cell, vol.110, issue.5, pp.563-574, 2002.
DOI : 10.1016/S0092-8674(02)00908-X

M. Siomi, K. Sato, D. Pezic, and A. Aravin, PIWI-interacting small RNAs: the vanguard of genome defence, Nature Reviews Molecular Cell Biology, vol.103, issue.4, pp.246-258, 2011.
DOI : 10.1038/nrm3089

A. Aravin, G. Hannon, and J. Brennecke, The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race, Science, vol.318, issue.5851, pp.761-764, 2007.
DOI : 10.1126/science.1146484

J. Ipsaro, A. Haase, S. Knott, L. Joshua-tor, and G. Hannon, The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis, Nature, vol.103, issue.7423, pp.279-283, 2012.
DOI : 10.1038/nature11502

H. Nishimasu, Structure and function of Zucchini endoribonuclease in piRNA biogenesis, Nature, vol.66, issue.7423, pp.284-287, 2012.
DOI : 10.1038/nature11509

F. Mohn, D. Handler, and J. Brennecke, piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis, Science, vol.348, issue.6236, pp.812-817, 2015.
DOI : 10.1126/science.aaa1039

B. Han, W. Wang, C. Li, Z. Weng, and P. Zamore, piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production, Science, vol.348, issue.6236, pp.817-821, 2015.
DOI : 10.1126/science.aaa1264

K. Saito, Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends, Genes & Development, vol.21, issue.13, pp.1603-1608, 2007.
DOI : 10.1101/gad.1563607

K. Saito, Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome, Genes & Development, vol.20, issue.16, pp.2214-2222, 2006.
DOI : 10.1101/gad.1454806

L. Gunawardane, A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila, Science, vol.315, issue.5818, pp.1587-1590, 2007.
DOI : 10.1126/science.1140494

Z. Yan, Widespread expression of piRNA-like molecules in somatic tissues, Nucleic Acids Research, vol.39, issue.15, pp.6596-6607, 2011.
DOI : 10.1093/nar/gkr298

E. Morazzani, M. Wiley, M. Murreddu, Z. Adelman, and K. Myles, Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma, PLoS Pathogens, vol.38, issue.1, p.1002470, 2012.
DOI : 10.1371/journal.ppat.1002470.s005

Q. Wu, Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.1606-1611, 2010.
DOI : 10.1073/pnas.0911353107

J. Scott, Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and ???Incompetent Mosquito Cells, PLoS Neglected Tropical Diseases, vol.6, issue.10, p.848, 2010.
DOI : 10.1371/journal.pntd.0000848.t002

A. Hess, Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense, BMC Microbiology, vol.11, issue.1, p.45, 2011.
DOI : 10.1038/nprot.2006.62

D. Brackney, C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response, PLoS Neglected Tropical Diseases, vol.36, issue.7, p.856, 2010.
DOI : 10.1371/journal.pntd.0000856.t001

N. Vodovar, Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells, PLoS ONE, vol.14, issue.1, p.30861, 2012.
DOI : 10.1371/journal.pone.0030861.t001

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

P. Léger, Dicer-2- and Piwi-Mediated RNA Interference in Rift Valley Fever Virus-Infected Mosquito Cells, Journal of Virology, vol.87, issue.3, pp.1631-1648, 2013.
DOI : 10.1128/JVI.02795-12

E. Schnettler, Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, Journal of General Virology, vol.94, issue.Pt_7, pp.1680-1689, 2013.
DOI : 10.1099/vir.0.053850-0

P. Miesen, E. Girardi, and R. Van-rij, mosquito cells, Nucleic Acids Research, vol.43, issue.13, pp.6545-6556, 2015.
DOI : 10.1093/nar/gkv590

URL : https://hal.archives-ouvertes.fr/pasteur-01379361

L. Sabin, S. Hanna, and S. Cherry, Innate antiviral immunity in Drosophila, Current Opinion in Immunology, vol.22, issue.1, pp.4-9, 2010.
DOI : 10.1016/j.coi.2010.01.007

J. Wang, S. Valanne, and M. Rämet, as a model for antiviral immunity, World Journal of Biological Chemistry, vol.1, issue.5, pp.151-159, 2010.
DOI : 10.4331/wjbc.v1.i5.151

T. Huszar and J. Imler, Chapter 6 Drosophila Viruses and the Study of Antiviral Host???Defense, Adv Virus Res, vol.72, pp.227-265, 2008.
DOI : 10.1016/S0065-3527(08)00406-5

S. Dearing, P. Scotti, P. Wigley, and S. Dhana, (Coleoptera: Scarabaeidae), New Zealand Journal of Zoology, vol.27, issue.2, pp.267-269, 1980.
DOI : 10.1159/000149489

M. Fukaya and S. Nasu, A chilo iridescent virus (CIV) from the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae), Appl Entomol Zool, vol.1, issue.2, pp.69-72, 1966.

H. Chotkowski, West Nile virus infection of Drosophila melanogaster induces a protective RNAi response, Virology, vol.377, issue.1, pp.197-206, 2008.
DOI : 10.1016/j.virol.2008.04.021

C. Li, Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies, Cell, vol.137, issue.3, pp.509-521, 2009.
DOI : 10.1016/j.cell.2009.04.027

H. Huang, AGO3 Slicer activity regulates mitochondria???nuage localization of Armitage and piRNA amplification, The Journal of Cell Biology, vol.26, issue.2, pp.217-230, 2014.
DOI : 10.1083/jcb.201401002.dv

C. Malone, Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary, Cell, vol.137, issue.3, pp.522-535, 2009.
DOI : 10.1016/j.cell.2009.03.040

M. Magwire, Genome-Wide Association Studies Reveal a Simple Genetic Basis of Resistance to Naturally Coevolving Viruses in Drosophila melanogaster, PLoS Genetics, vol.85, issue.11, p.1003057, 2012.
DOI : 10.1371/journal.pgen.1003057.s003

N. Lau, Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line, Genome Research, vol.19, issue.10, pp.1776-1785, 2009.
DOI : 10.1101/gr.094896.109

K. Elmer, S. Helfer, M. Mirkovic-hösle, and K. Förstemann, Analysis of Endo-siRNAs in Drosophila, Methods Mol Biol, vol.1173, pp.33-49, 2014.
DOI : 10.1007/978-1-4939-0931-5_4

B. Goic, RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila, Nature Immunology, vol.721, issue.4, pp.396-403, 2013.
DOI : 10.1126/science.1129333

E. Theron, C. Dennis, E. Brasset, and C. Vaury, Distinct features of the piRNA pathway in somatic and germ cells: from piRNA cluster transcription to piRNA processing and amplification, Mobile DNA, vol.24, issue.1, p.28, 2014.
DOI : 10.1186/s13100-014-0028-y

J. Carpenter, D. Obbard, X. Maside, and F. Jiggins, The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster, Molecular Ecology, vol.46, issue.18, pp.3947-3954, 2007.
DOI : 10.1038/353440a0

L. Wilfert and F. Jiggins, Host-parasite coevolution: genetic variation in a virus population and the interaction with a host gene, Journal of Evolutionary Biology, vol.20, issue.7, pp.1447-1455, 2010.
DOI : 10.1111/j.1420-9101.2010.02002.x

M. Magwire, F. Bayer, C. Webster, C. Cao, and F. Jiggins, Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication, PLoS Genetics, vol.37, issue.10, p.1002337, 2011.
DOI : 10.1371/journal.pgen.1002337.s002

A. Bronkhorst, The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery, Proceedings of the National Academy of Sciences, vol.109, issue.51, pp.3604-3613, 2012.
DOI : 10.1073/pnas.1207213109

URL : https://hal.archives-ouvertes.fr/pasteur-01379102

R. Dasgupta, B. Selling, and R. Rueckert, Flock house virus: a simple model for studying persistent infection in cultured Drosophila cells, Arch Virol, vol.9, pp.121-132, 1994.
DOI : 10.1007/978-3-7091-9326-6_13

T. Thomson, A. Schneemann, and J. Johnson, Oocyte destruction is activated during viral infection, genesis, vol.178, issue.103, pp.453-465, 2012.
DOI : 10.1002/dvg.22004

D. Teninges, A. Ohanessian, C. Richard-molard, and D. Contamine, Isolation and Biological Properties of Drosophila X Virus, Journal of General Virology, vol.42, issue.2, pp.241-254, 1979.
DOI : 10.1099/0022-1317-42-2-241

C. Chandler, S. Chari, and I. Dworkin, Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution, Trends in Genetics, vol.29, issue.6, pp.358-366, 2013.
DOI : 10.1016/j.tig.2013.01.009

C. Webster, The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster, PLOS Biology, vol.368, issue.1614, p.1002210, 2015.
DOI : 10.1371/journal.pbio.1002210.s029

D. Obbard, J. Welch, K. Kim, and F. Jiggins, Quantifying Adaptive Evolution in the Drosophila Immune System, PLoS Genetics, vol.355, issue.10, p.1000698, 2009.
DOI : 10.1371/journal.pgen.1000698.s030

B. Kolaczkowski, D. Hupalo, and A. Kern, Recurrent Adaptation in RNA Interference Genes Across the Drosophila Phylogeny, Molecular Biology and Evolution, vol.28, issue.2, pp.1033-1042, 2011.
DOI : 10.1093/molbev/msq284

Q. Zhang, DIP1 plays an antiviral role against DCV infection in Drosophila melanogaster, Biochemical and Biophysical Research Communications, vol.460, issue.2, pp.222-226, 2015.
DOI : 10.1016/j.bbrc.2015.03.013

C. Campbell, W. Black, A. Hess, and B. Foy, Comparative genomics of small RNA regulatory pathway components in vector mosquitoes, BMC Genomics, vol.9, issue.1, p.425, 2008.
DOI : 10.1186/1471-2164-9-425

L. Teixeira, A. Ferreira, and M. Ashburner, The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster, PLoS Biology, vol.23, issue.12, p.2, 2008.
DOI : 10.1371/journal.pbio.1000002.t001

S. Merkling and R. Van-rij, Analysis of resistance and tolerance to virus infection in Drosophila, Nature Protocols, vol.510, issue.7, pp.1084-1097, 2015.
DOI : 10.1038/nri2432

L. Reed and H. Muench, A simple method of estimating fifty per cent endpoints, Am J Hyg, vol.27, pp.493-497, 1938.

V. Gausson and M. Saleh, Viral Small RNA Cloning and Sequencing, Methods Mol Biol, vol.721, pp.107-122, 2011.
DOI : 10.1007/978-1-61779-037-9_6

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, issue.1, 2011.
DOI : 10.14806/ej.17.1.200

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

M. Morgan and A. Grimshaw, High-Throughput Computing in the Sciences, Methods Enzymol, vol.467, pp.197-227, 2009.
DOI : 10.1016/S0076-6879(09)67008-7