H. Ashida, A bacterial E3 ubiquitin ligase IpaH9, vol.8, 2010.

, Proceedings of the National Academy of Sciences, vol.103, pp.18745-18750

K. Paschos and M. J. Allday, Epigenetic reprogramming of host genes in viral 579 and microbial pathogenesis, Trends Microbiol, vol.18, pp.439-447, 2010.

H. Bierne, Epigenetics and bacterial infections. Cold Spring Harb Perspect, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651713

B. Schmeck, Histone acetylation and flagellin are essential for Legionella 583 pneumophila-induced cytokine expression, The Journal of Immunology, vol.181, pp.940-947, 2008.

S. Rea, Regulation of chromatin structure by site-specific histone H3 585 methyltransferases, Nature, vol.406, pp.593-599, 2000.

C. Qian, SET domain protein lysine methyltransferases: Structure, 587 specificity and catalysis, Cell Mol Life Sci, vol.63, pp.2755-2763, 2006.

S. Saccani, -Dependent marking of inflammatory genes for increased 589 NF-kappa B recruitment, Nature immunology, vol.3, pp.69-75, 2002.

M. Rolando, Legionella pneumophila Effector RomA Uniquely Modifies 591, 2013.

, Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial 592

, Replication. Cell Host Microbe, vol.13, pp.395-405

T. Li, SET-domain bacterial effectors target heterochromatin protein 1 to 594 activate host rDNA transcription, EMBO reports, vol.14, pp.733-740, 2013.

S. K. Kurdistani, Mapping Global Histone Acetylation Patterns to Gene 596 Expression, Cell, vol.117, pp.721-733, 2004.

T. Roh, Active chromatin domains are defined by acetylation islands 598 revealed by genome-wide mapping, Genes Dev, vol.19, pp.542-552, 2005.

A. Johnsson, HAT-HDAC interplay modulates global histone H3K14 600 acetylation in gene-coding regions during stress, EMBO reports, vol.10, pp.1009-1014, 2009.

A. J. Bannister, Selective recognition of methylated lysine 9 on histone H3 602 by the HP1 chromo domain, Nature, vol.410, pp.120-124, 2001.

M. Lachner, Methylation of histone H3 lysine 9 creates a binding site for 604 HP1 proteins, Nature, vol.410, pp.116-120, 2001.

B. Lemaitre and S. E. Girardin, Translation inhibition and metabolic stress 606 pathways in the host response to bacterial pathogens, Nat Rev Microbiol, vol.11, pp.365-369, 2013.

Y. Belyi, Legionella pneumophila glucosyltransferase inhibits host 608 elongation factor 1A, Proceedings of the National Academy of Sciences, vol.103, p.16958, 2006.

Y. Belyi, Lgt: a Family of Cytotoxic Glucosyltransferases Produced by 611 Legionella pneumophila, J Bacteriol, vol.190, pp.3026-3035, 2008.

X. Shen, Targeting eEF1A by a Legionella pneumophila effector leads to 613 inhibition of protein synthesis and induction of host stress response, Cell Microbiol, vol.11, p.614, 2009.

M. F. Fontana, , p.616, 2011.

, Synthesis Are Critical for Induction of the Innate Immune Response to Virulent 617 Legionella pneumophila, PLoS Pathog, vol.7, p.1001289

Z. Guo, A Legionella effector modulates host cytoskeletal structure by 619 inhibiting actin polymerization, Microbes and Infection, vol.16, pp.225-236, 2014.

V. M. Bruno, Salmonella Typhimurium Type III Secretion Effectors Stimulate 621, 2009.

, Innate Immune Responses in Cultured Epithelial Cells, PLoS Pathog, vol.5, p.622, 1000538.

A. M. Keestra, Manipulation of small Rho GTPases is a pathogen-induced 623 process detected by NOD1, Nature, vol.496, pp.233-237, 2013.

S. S. Ivanov, Pathogen signatures activate a ubiquitination pathway that 625 modulates the function of the metabolic checkpoint kinase mTOR, Nature immunology, p.626, 2013.

M. Laplante and D. M. Sabatini, Signaling in Growth Control and Disease, Cell, vol.628, pp.274-293, 2012.

F. Randow, Cellular self-defense: how cell-autonomous immunity protects, 2013.

E. Rothmeier, Activation of Ran GTPase by a Legionella effector promotes 632 microtubule polymerization, pathogen vacuole motility and infection, PLoS Pathog, vol.9, p.633, 2013.

S. Simon, Icm/Dot-dependent inhibition of phagocyte migration by 635, 2014.

, Legionella is antagonized by a translocated Ran GTPase activator, Cell Microbiol

Z. Q. Luo, Multiple substrates of the Legionella pneumophila Dot/Icm system 638 identified by interbacterial protein transfer, Proceedings of the National Academy of 639 Sciences, vol.101, pp.841-846, 2004.

T. J. O'connor, Aggravating genetic interactions allow a solution to 641 redundancy in a bacterial pathogen, Science, vol.338, pp.1440-1444, 2012.

J. E. Galán, Common Themes in the Design and Function of Bacterial Effectors, 2009.

, Cell Host Microbe, vol.5, pp.571-579

C. Rao, Phylogenetic reconstruction of the Legionella pneumophila 645, 2013.

, Philadelphia-1 laboratory strains through comparative genomics, PLoS ONE, vol.8, p.64129

S. Backert and T. F. Meyer, Type IV secretion systems and their effectors in 647 bacterial pathogenesis, Current Opinion in Microbiology, vol.9, pp.207-217, 2006.

H. Nagai and T. Kubori, Type IVB Secretion Systems of Legionella and Other 649, 2011.

, Gram-Negative Bacteria, Front. Microbio, vol.2, p.136

P. J. Christie, Mechanism and structure of the bacterial type IV secretion 651 systems, Biochim Biophys Acta, 2014.

S. Ninio, The Legionella IcmS-IcmW protein complex is important for 653, 2005.

, Dot/Icm-mediated protein translocation, Mol Microbiol, vol.55, pp.912-926

D. Burstein, Genome-Scale Identification of Legionella pneumophila 655, 2009.

, Effectors Using a Machine Learning Approach, PLoS Pathog, vol.5, p.1000508

T. Murata, The Legionella pneumophila effector protein DrrA is a Rab1 657 guanine nucleotide-exchange factor, Nat Cell Biol, vol.8, pp.971-977, 2006.

N. Shohdy, Pathogen effector protein screening in yeast identifies 659, 2005.

, Legionella factors that interfere with membrane trafficking, Proc Natl Acad Sci, vol.102, p.660

X. Charpentier, Chemical Genetics Reveals Bacterial and Host Cell, vol.662, 2009.

, Functions Critical for Type IV Effector Translocation by Legionella pneumophila, PLoS, vol.663, p.1000501

S. S. Weber, Legionella pneumophila exploits PI(4)P to anchor secreted 665 effector proteins to the replicative vacuole, PLoS Pathog, vol.2, p.46, 2006.

H. Bruggemann, Virulence strategies for infecting phagocytes deduced 667 from the in vivo transcriptional program of Legionella pneumophila, Cell Microbiol, vol.8, pp.1228-1240, 2006.

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family 670 of nucleomodulins, Cell Microbiol, 2012.

K. Ohkuma, Association of Helicobacter pylori infection with atrophic 672 gastritis and intestinal metaplasia, J. Gastroenterol. Hepatol, vol.15, pp.1105-1112, 2000.

T. Nakajima, Persistence of a component of DNA methylation in gastric 674 mucosae after Helicobacter pylori eradication, J Gastroenterol, vol.45, pp.37-44, 2009.

T. Niwa, Inflammatory Processes Triggered by Helicobacter pylori Infection 676, 2010.

, Cause Aberrant DNA Methylation in Gastric Epithelial Cells, Cancer Res, vol.70, p.1440

J. C. Garcia-garcia, Epigenetic Silencing of Host Cell Defense Genes 679, 2009.

, Enhances Intracellular Survival of the Rickettsial Pathogen Anaplasma 680 phagocytophilum, PLoS Pathog, vol.5, p.1000488

M. Murata, Chlamydial SET domain protein functions as a histone 682 methyltransferase, Microbiology, vol.153, pp.585-592, 2007.

M. E. Pennini, Histone Methylation by NUE, a Novel Nuclear Effector of the 684, 2010.

, Intracellular Pathogen Chlamydia trachomatis, PLoS Pathog, vol.6, p.1000995

R. Alvarez-venegas, Origin of the bacterial SET domain genes: vertical or 686 horizontal?, Mol. Biol. Evol, vol.24, pp.482-497, 2007.

J. Huang and S. L. Berger, The emerging field of dynamic lysine methylation of 688 non-histone proteins, Curr Opin Genet Dev, vol.18, pp.152-158, 2008.