K. Vasquez, K. Marburger, Z. Intody, and J. Wilson, Manipulating the mammalian genome by homologous recombination, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8403-8410, 2001.
DOI : 10.1073/pnas.111009698

A. Choulika, A. Perrin, B. Dujon, and J. Nicolas, Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.15, issue.4, pp.1968-1973, 1995.
DOI : 10.1128/MCB.15.4.1968

M. Cohen-tannoudji, S. Robine, A. Choulika, D. Pinto, E. Marjou et al., I-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells, Molecular and Cellular Biology, vol.18, issue.3, pp.1444-1448, 1998.
DOI : 10.1128/MCB.18.3.1444

G. Donoho, M. Jasin, and P. Berg, Analysis of Gene Targeting and Intrachromosomal Homologous Recombination Stimulated by Genomic Double-Strand Breaks in Mouse Embryonic Stem Cells, Molecular and Cellular Biology, vol.18, issue.7, pp.4070-4078, 1998.
DOI : 10.1128/MCB.18.7.4070

F. Liang, M. Han, P. Romanienko, and M. Jasin, Homology-directed repair is a major double-strand break repair pathway in mammalian cells, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.5172-5177, 1998.
DOI : 10.1073/pnas.95.9.5172

P. Rouet, F. Smih, and M. Jasin, Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease., Molecular and Cellular Biology, vol.14, issue.12, pp.8096-8106, 1994.
DOI : 10.1128/MCB.14.12.8096

R. Sargent, M. Brenneman, and J. Wilson, Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination., Molecular and Cellular Biology, vol.17, issue.1, pp.267-277, 1997.
DOI : 10.1128/MCB.17.1.267

F. Smih, P. Rouet, P. Romanienko, and M. Jasin, Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells, Nucleic Acids Research, vol.23, issue.24, pp.5012-5019, 1995.
DOI : 10.1093/nar/23.24.5012

A. Izmiryan, S. Basmaciogullari, A. Henry, F. Paques, and O. Danos, Efficient gene targeting mediated by a lentiviral vector-associated meganuclease, Nucleic Acids Research, vol.39, issue.17, pp.7610-7619, 2011.
DOI : 10.1093/nar/gkr524

W. Gong and K. Golic, Ends-out, or replacement, gene targeting in Drosophila, Proceedings of the National Academy of Sciences, vol.100, issue.5, pp.2556-2561, 2003.
DOI : 10.1073/pnas.0535280100

H. Puchta, B. Dujon, and B. Hohn, Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination., Proceedings of the National Academy of Sciences, vol.93, issue.10, pp.5055-5060, 1996.
DOI : 10.1073/pnas.93.10.5055

K. Steel, D. Davidson, and I. Jackson, TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor, Development, vol.115, pp.1111-1119, 1992.

W. Pavan and S. Tilghman, Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes., Proceedings of the National Academy of Sciences, vol.91, issue.15, pp.7159-7163, 1994.
DOI : 10.1073/pnas.91.15.7159

E. Nishimura, S. Jordan, H. Oshima, H. Yoshida, and M. Osawa, Dominant role of the niche in melanocyte stem-cell fate determination, Nature, vol.416, issue.6883, pp.854-860, 2002.
DOI : 10.1038/416854a

M. Mackenzie, S. Jordan, P. Budd, and I. Jackson, Activation of the Receptor Tyrosine Kinase Kit Is Required for the Proliferation of Melanoblasts in the Mouse Embryo, Developmental Biology, vol.192, issue.1, pp.99-107, 1997.
DOI : 10.1006/dbio.1997.8738

G. Aubin-houzelstein, J. Djian-zaouche, F. Bernex, S. Gadin, and V. Delmas, Melanoblasts' Proper Location and Timed Differentiation Depend on Notch/RBP-J Signaling in Postnatal Hair Follicles, Journal of Investigative Dermatology, vol.128, issue.11, pp.2686-2695, 2008.
DOI : 10.1038/jid.2008.120

L. Guyonneau, A. Rossier, C. Richard, E. Hummler, and F. Beermann, Expression of Cre Recombinase in Pigment Cells, Pigment Cell Research, vol.121, issue.4, pp.305-309, 2002.
DOI : 10.1002/gene.10041

K. Dunn, M. Brady, C. Ochsenbauer-jambor, S. Snyder, and A. Incao, WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action, Pigment Cell Research, vol.122, issue.Suppl 8, pp.167-180, 2005.
DOI : 10.1111/j.1600-0749.2005.00226.x

J. Lanning, J. Wallace, D. Zhang, G. Diwakar, and Z. Jiao, Altered Melanocyte Differentiation and Retinal Pigmented Epithelium Transdifferentiation Induced by Mash1 Expression in Pigment Cell Precursors, Journal of Investigative Dermatology, vol.125, issue.4, pp.805-817, 2005.
DOI : 10.1111/j.0022-202X.2005.23819.x

S. Woods and J. Bishop, A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter, Transgenic Research, vol.216, issue.2, pp.421-428, 2011.
DOI : 10.1007/s11248-010-9421-6

P. Pollock, K. Cohen-solal, R. Sood, J. Namkoong, and J. Martino, Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia, Nature Genetics, vol.34, issue.1, pp.108-112, 2003.
DOI : 10.1038/ng1148

S. Zhao and P. Overbeek, Tyrosinase-Related Protein 2 Promoter Targets Transgene Expression to Ocular and Neural Crest-Derived Tissues, Developmental Biology, vol.216, issue.1, pp.154-163, 1999.
DOI : 10.1006/dbio.1999.9480

L. Guyonneau, F. Murisier, A. Rossier, A. Moulin, and F. Beermann, Melanocytes and Pigmentation Are Affected in Dopachrome Tautomerase Knockout Mice, Molecular and Cellular Biology, vol.24, issue.8, pp.3396-3403, 2004.
DOI : 10.1128/MCB.24.8.3396-3403.2004

G. Egidy, J. S. Bosse, P. Bernex, F. Geffrotin, and C. , Transcription analysis in the MeLiM swine model identifies RACK1 as a potential marker of malignancy for human melanocytic proliferation, Molecular Cancer, vol.7, issue.1, p.34, 2008.
DOI : 10.1186/1476-4598-7-34

V. Winnepenninckx, V. Lazar, S. Michiels, P. Dessen, and M. Stas, Gene Expression Profiling of Primary Cutaneous Melanoma and Clinical Outcome, JNCI Journal of the National Cancer Institute, vol.98, issue.7, pp.472-482, 2006.
DOI : 10.1093/jnci/djj103

A. Choulika, A. Perrin, B. Dujon, and J. Nicolas, The yeast I-Sce I meganuclease induces site-directed chromosomal recombination in mammalian cells. Comptes rendus de l'Academie des sciences Serie III, Sciences de la vie, vol.317, pp.1013-1019, 1994.

M. Okabe, M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune, ???Green mice??? as a source of ubiquitous green cells, FEBS Letters, vol.380, issue.3, pp.313-319, 1997.
DOI : 10.1016/S0014-5793(97)00313-X

C. Kress, S. Vandormael-pournin, P. Baldacci, M. Cohen-tannoudji, and C. Babinet, Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129, 1998.

P. Scei, SceI expression plasmid-transfected MF1 ES cells was extracted and analyzed by LM-PCR. After an autoradiographic exposure time of 16 h, no LM-PCR products is observed when DNA from mock-transfected cells was used as a template. A fragment of the predicted 148 bp size is seen after LM-PCR-amplification of DNA from cells transfected with pCMV-I-SceI and pCAG-I-SceI. The positions of size standards (in bp) are shown on the left, Mammalian genome, vol.9, pp.998-1001

E. Robertson, A. Bradley, M. Kuehn, and M. Evans, Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector, Nature, vol.54, issue.6087, pp.445-448, 1986.
DOI : 10.1038/323445a0

P. Budd and I. Jackson, Structure of the Mouse Tyrosinase-Related Protein-2/Dopachrome Tautomerase (Tyrp2/Dct) Gene and Sequence of Two Novel Slaty Alleles, Genomics, vol.29, issue.1, pp.35-43, 1995.
DOI : 10.1006/geno.1995.1212

T. Abe, H. Kiyonari, G. Shioi, K. Inoue, and K. Nakao, Establishment of conditional reporter mouse lines at ROSA26 locus for live cell imaging, genesis, vol.94, issue.Part 23, pp.579-590, 2011.
DOI : 10.1002/dvg.20753

H. Gu, Y. Zou, and K. Rajewsky, Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting, Cell, vol.73, issue.6, pp.1155-1164, 1993.
DOI : 10.1016/0092-8674(93)90644-6

B. Elliott, C. Richardson, J. Winderbaum, J. Nickoloff, and M. Jasin, Gene Conversion Tracts from Double-Strand Break Repair in Mammalian Cells, Molecular and Cellular Biology, vol.18, issue.1, pp.93-101, 1998.
DOI : 10.1128/MCB.18.1.93

A. Besaratinia and G. Pfeifer, DNA-lesion mapping in mammalian cells, Methods, vol.48, issue.1, pp.35-39, 2009.
DOI : 10.1016/j.ymeth.2009.02.008

C. Ward and P. Stern, The Human Cytomegalovirus Immediate-Early Promoter is Transcriptionally Active in Undifferentiated Mouse Embryonic Stem Cells, Stem Cells, vol.33, issue.5, pp.472-475, 2002.
DOI : 10.1634/stemcells.20-5-472

A. Lombardo, P. Genovese, C. Beausejour, S. Colleoni, and Y. Lee, Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery, Nature Biotechnology, vol.12, issue.11, pp.1298-1306, 2007.
DOI : 10.1038/nbt1353

J. Connelly, J. Barker, S. Pruett-miller, and M. Porteus, Gene Correction by Homologous Recombination With Zinc Finger Nucleases in Primary Cells From a Mouse Model of a Generic Recessive Genetic Disease, Molecular Therapy, vol.18, issue.6, pp.1103-1110, 2010.
DOI : 10.1038/mt.2010.57

E. Tichy, R. Pillai, L. Deng, L. Liang, and J. Tischfield, Mouse Embryonic Stem Cells, but Not Somatic Cells, Predominantly Use Homologous Recombination to Repair Double-Strand DNA Breaks, Stem Cells and Development, vol.19, issue.11, pp.1699-1711, 2010.
DOI : 10.1089/scd.2010.0058

L. Serrano, L. Liang, Y. Chang, L. Deng, and C. Maulion, Homologous Recombination Conserves DNA Sequence Integrity Throughout the Cell Cycle in Embryonic Stem Cells, Stem Cells and Development, vol.20, issue.2, pp.363-374, 2011.
DOI : 10.1089/scd.2010.0159

P. Stambrook and E. Tichy, Preservation of genomic integrity in mouse embryonic stem cells Advances in experimental medicine and biology 695, pp.59-75, 2010.

F. Daboussi, M. Zaslavskiy, L. Poirot, M. Loperfido, and A. Gouble, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic acids research, 2012.

F. Bielle, A. Griveau, N. Narboux-neme, S. Vigneau, and M. Sigrist, Multiple origins of Cajal-Retzius cells at the borders of the developing pallium, Nature Neuroscience, vol.106, issue.8, pp.1002-1012, 2005.
DOI : 10.1016/0925-4773(94)90089-2