A. Mcpherron, A. Lawler, and S. Lee, Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member, nature, vol.387, issue.6628, pp.83-90, 1997.
DOI : 10.1038/387083a0

A. Mcpherron, A. Lawler, and S. Lee, Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11, Nat Genet, vol.22, pp.260-264, 1999.

A. Mcpherron and S. Lee, Double muscling in cattle due to mutations in the myostatin gene, Proceedings of the National Academy of Sciences, vol.94, issue.23, pp.12457-12461, 1997.
DOI : 10.1073/pnas.94.23.12457

D. Mosher, P. Quignon, C. Bustamante, N. Sutter, C. Mellersh et al., A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs, PLoS Genet, vol.3, 2007.

E. Medeiros, M. Phelps, F. Fuentes, and T. Bradley, Overexpression of follistatin in trout stimulates increased muscling, AJP: Regulatory, Integrative and Comparative Physiology, vol.297, issue.1, pp.235-242, 2008.
DOI : 10.1152/ajpregu.91020.2008

A. Mcpherron and S. Lee, Suppression of body fat accumulation in myostatin-deficient mice, Journal of Clinical Investigation, vol.109, issue.5, pp.595-601, 2002.
DOI : 10.1172/JCI0213562

A. Mcpherron, T. Huynh, and S. Lee, Redundancy of myostatin and growth/differentiation factor 11 function, BMC Developmental Biology, vol.9, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1471-213X-9-24

E. Harmon, A. Apelqvist, N. Smart, X. Gu, D. Osborne et al., GDF11 modulates NGN3+ islet progenitor cell number and promotes ??-cell differentiation in pancreas development, Development, vol.131, issue.24, pp.6163-6174, 2004.
DOI : 10.1242/dev.01535

H. Wu, S. Ivkovic, R. Murray, S. Jaramillo, K. Lyons et al., Autoregulation of Neurogenesis by GDF11, Neuron, vol.37, issue.2, pp.197-207, 2003.
DOI : 10.1016/S0896-6273(02)01172-8

J. Kim, H. Wu, A. Lander, K. Lyons, M. Matzuk et al., GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina, Science, vol.308, issue.5730, pp.1927-1930, 2005.
DOI : 10.1126/science.1110175

M. Nakashima, T. Toyono, A. Akamine, and A. Joyner, Expression of growth/differentiation factor 11, a new member of the BMP/TGF?? superfamily during mouse embryogenesis, Mechanisms of Development, vol.80, issue.2, pp.185-189, 1999.
DOI : 10.1016/S0925-4773(98)00205-6

L. Gamer, N. Wolfman, A. Celeste, G. Hattersley, R. Hewick et al., A Novel BMP Expressed in Developing Mouse Limb, Spinal Cord, and Tail Bud Is a Potent Mesoderm Inducer inXenopusEmbryos, Developmental Biology, vol.208, issue.1, pp.222-232, 1998.
DOI : 10.1006/dbio.1998.9191

A. Esquela and S. Lee, Regulation of metanephric kidney development by growth/differentiation factor 11, Developmental Biology, vol.257, issue.2, pp.356-370, 2003.
DOI : 10.1016/S0012-1606(03)00100-3

D. Dichmann, H. Yassin, and P. Serup, Analysis of pancreatic endocrine development in GDF11-deficient mice, Developmental Dynamics, vol.23, issue.11, pp.3016-3025, 2006.
DOI : 10.1002/dvdy.20953

S. Girgenrath, K. Song, and L. Whittemore, Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle, Muscle & Nerve, vol.474, issue.1, pp.34-40, 2005.
DOI : 10.1002/mus.20175

H. Amthor, R. Macharia, R. Navarrete, M. Schuelke, S. Brown et al., Lack of myostatin results in excessive muscle growth but impaired force generation, Proceedings of the National Academy of Sciences, vol.104, issue.6, pp.1835-1840, 2007.
DOI : 10.1073/pnas.0604893104

A. Mcpherron, Metabolic Functions of Myostatin and GDF11, Immunology??? Endocrine & Metabolic Agents in Medicinal Chemistry, vol.10, issue.4, pp.217-231, 2010.
DOI : 10.2174/187152210793663810

J. Lin, H. Arnold, M. Della-fera, M. Azain, D. Hartzell et al., Myostatin Knockout in Mice Increases Myogenesis and Decreases Adipogenesis, Biochemical and Biophysical Research Communications, vol.291, issue.3, pp.701-706, 2002.
DOI : 10.1006/bbrc.2002.6500

B. Rodgers, J. Interlichia, D. Garikipati, R. Mamidi, M. Chandra et al., Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling, The Journal of Physiology, vol.31, issue.20, pp.4873-4886, 2009.
DOI : 10.1113/jphysiol.2009.172544

J. Heineke, M. Auger-messier, J. Xu, M. Sargent, A. York et al., Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure, Circulation, vol.121, issue.3, pp.419-425, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.882068

N. Biesemann, L. Mendler, S. Kostin, A. Wietelmann, T. Borchardt et al., Myostatin induces interstitial fibrosis in the heart via TAK1 and p38, Cell and Tissue Research, vol.282, issue.3, pp.779-787, 2015.
DOI : 10.1007/s00441-015-2139-2

N. Biesemann, L. Mendler, A. Wietelmann, S. Hermann, M. Schäfers et al., Myostatin Regulates Energy Homeostasis in the Heart and Prevents Heart Failure, Circulation Research, vol.115, issue.2, pp.296-310, 2014.
DOI : 10.1161/CIRCRESAHA.115.304185

F. Loffredo, M. Steinhauser, and S. Jay, Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy, Cell, vol.153, issue.4, pp.828-839, 2013.
DOI : 10.1016/j.cell.2013.04.015

L. Katsimpardi, N. Litterman, P. Schein, C. Miller, F. Loffredo et al., Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors, Science, vol.344, issue.6184, pp.630-634, 2014.
DOI : 10.1126/science.1251141

M. Sinha, Y. Jang, and J. Oh, Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle, Science, vol.344, issue.6184, pp.649-652, 2014.
DOI : 10.1126/science.1251152

R. Suragani, S. Cadena, and S. Cawley, Transforming growth factor-?? superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis, Nature Medicine, vol.109, issue.4, pp.408-414, 2014.
DOI : 10.1038/nm.3512

M. Dussiot, T. Maciel, and A. Fricot, An activin receptor IIA ligand trap corrects ineffective erythropoiesis in ??-thalassemia, Nature Medicine, vol.119, issue.4, pp.398-407, 2014.
DOI : 10.1038/nm.3468

D. Yadin, P. Knaus, and T. Mueller, Structural insights into BMP receptors: Specificity, activation and inhibition, Cytokine & Growth Factor Reviews, vol.27, pp.13-34, 2016.
DOI : 10.1016/j.cytogfr.2015.11.005

J. Cash, C. Rejon, A. Mcpherron, D. Bernard, and T. Thompson, The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding, The EMBO Journal, vol.11, issue.17, pp.2662-2676, 2009.
DOI : 10.1074/jbc.M704146200

J. Cash, E. Angerman, C. Kattamuri, K. Nolan, H. Zhao et al., Structure of Myostatin??Follistatin-like 3, Journal of Biological Chemistry, vol.287, issue.2
DOI : 10.1074/jbc.M111.270801

A. Padyana, B. Vaidialingam, D. Hayes, P. Gupta, M. Franti et al., Crystal structure of human GDF11, Acta Crystallographica Section F Structural Biology Communications, vol.67, issue.3, pp.160-164, 2016.
DOI : 10.1107/S2053230X16001588/rr5115sup1.pdf

M. Shi, J. Zhu, R. Wang, X. Chen, L. Mi et al., Latent TGF-?? structure and activation, Nature, vol.107, issue.7351, pp.343-349, 2011.
DOI : 10.1038/nature10152

C. Harrison, S. Musawi, and K. Walton, Prodomains regulate the synthesis, extracellular localisation and activity of TGF-?? superfamily ligands, Growth Factors, vol.121, issue.5, pp.174-186, 2011.
DOI : 10.1016/j.cell.2010.07.011

A. Gray and A. Mason, Requirement for activin A and transforming growth factor--beta 1 pro-regions in homodimer assembly, Science, vol.247, issue.4948, pp.1328-1330, 1990.
DOI : 10.1126/science.2315700

C. Mcfarlane, B. Langley, M. Thomas, A. Hennebry, E. Plummer et al., Proteolytic processing of myostatin is auto-regulated during myogenesis, Developmental Biology, vol.283, issue.1, pp.58-69, 2005.
DOI : 10.1016/j.ydbio.2005.03.039

S. Anderson, A. Goldberg, and M. Whitman, Identification of a Novel Pool of Extracellular Pro-myostatin in Skeletal Muscle, Journal of Biological Chemistry, vol.283, issue.11, pp.7027-7035, 2008.
DOI : 10.1074/jbc.M706678200

N. Wolfman, A. Mcpherron, W. Pappano, M. Davies, K. Song et al., Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15842-15846, 2003.
DOI : 10.1073/pnas.2534946100

G. Ge, D. Hopkins, W. Ho, and D. Greenspan, GDF11 Forms a Bone Morphogenetic Protein 1-Activated Latent Complex That Can Modulate Nerve Growth Factor-Induced Differentiation of PC12 Cells, Molecular and Cellular Biology, vol.25, issue.14, pp.5846-5858, 2005.
DOI : 10.1128/MCB.25.14.5846-5858.2005

S. Lee and A. Mcpherron, Regulation of myostatin activity and muscle growth, Proceedings of the National Academy of Sciences, vol.98, issue.16, pp.9306-9311, 2001.
DOI : 10.1073/pnas.151270098

R. Thies, T. Chen, M. Davies, K. Tomkinson, A. Pearson et al., GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding, Growth Factors, vol.18, pp.251-259, 2001.

R. Ferrell, V. Conte, E. Lawrence, S. Roth, J. Hagberg et al., Frequent Sequence Variation in the Human Myostatin (GDF8) Gene as a Marker for Analysis of Muscle-Related Phenotypes, Genomics, vol.62, issue.2, pp.203-207, 1999.
DOI : 10.1006/geno.1999.5984

G. Szláma, M. Trexler, L. Buday, and L. Patthy, K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin, FEBS Letters, vol.12, issue.3, pp.295-301, 2015.
DOI : 10.1016/j.febslet.2014.12.011

N. Garatachea, T. Pinós, Y. Cámara, G. Rodríguez-romo, E. Emanuele et al., Association of the K153R polymorphism in the myostatin gene and extreme longevity, AGE, vol.282, issue.35, pp.2445-2454, 2013.
DOI : 10.1007/s11357-013-9513-3

S. Bhatt, P. Nigam, A. Misra, R. Guleria, K. Luthra et al., Association of the Myostatin Gene with Obesity, Abdominal Obesity and Low Lean Body Mass and in Non-Diabetic Asian Indians in North India, PLoS ONE, vol.7, issue.8, 2012.
DOI : 10.1371/journal.pone.0040977.t003

C. Santiago, J. Ruiz, G. Rodríguez-romo, C. Fiuza-luces, T. Yvert et al., The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men, PLoS ONE, vol.315, issue.1, 2011.
DOI : 10.1371/journal.pone.0016323.t001

M. Seibert, Q. Xue, L. Fried, and J. Walston, Polymorphic Variation in the Human Myostatin (GDF-8) Gene and Association with Strength Measures in the Women's Health and Aging Study II Cohort, Journal of the American Geriatrics Society, vol.904, issue.8, pp.1093-1096, 2001.
DOI : 10.1046/j.1532-5415.2001.49214.x

S. Ben-zaken, Y. Meckel, D. Nemet, M. Rabinovich, E. Kassem et al., Frequency of the MSTN Lys(K)-153Arg(R) polymorphism among track & field athletes and swimmers, Growth Hormone & IGF Research, vol.25, issue.4, pp.196-200, 2015.
DOI : 10.1016/j.ghir.2015.04.001

A. Corsi, L. Ferrucci, A. Gozzini, A. Tanini, and M. Brandi, Myostatin Polymorphisms and Age-Related Sarcopenia in the Italian Population, Journal of the American Geriatrics Society, vol.48, issue.8, p.1463, 2002.
DOI : 10.1046/j.1532-5415.2002.50376.x

N. Garatachea and L. A. , Genes, physical fitness and ageing, Ageing Research Reviews, vol.12, issue.1, pp.90-102, 2013.
DOI : 10.1016/j.arr.2012.09.003

M. González-freire, G. Rodríguez-romo, C. Santiago, N. Bustamante-ara, T. Yvert et al., The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan, AGE, vol.63, issue.3, pp.405-409, 2010.
DOI : 10.1007/s11357-010-9139-7

X. Li, S. Wang, S. Tan, P. Chew, L. Liu et al., gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men, Journal of Sports Sciences, vol.228, issue.6, pp.883-891, 2014.
DOI : 10.1126/science.1069525

T. Tasar, P. Sahin, S. Karaman, E. Oz, A. Ulusoy et al., Myostatin Gene Polymorphism in an Elderly Sarcopenic Turkish Population, Genetic Testing and Molecular Biomarkers, vol.19, issue.8, pp.457-460, 2015.
DOI : 10.1089/gtmb.2015.0033

M. Jiang, L. Liang, S. Wang, T. Ratovitski, J. Holmstrom et al., Characterization and identification of the inhibitory domain of GDF-8 propeptide, Biochemical and Biophysical Research Communications, vol.315, issue.3, pp.525-531, 2004.
DOI : 10.1016/j.bbrc.2004.01.085

K. Takayama, Y. Noguchi, S. Aoki, S. Takayama, M. Yoshida et al., Identification of the Minimum Peptide from Mouse Myostatin Prodomain for Human Myostatin Inhibition, Journal of Medicinal Chemistry, vol.58, issue.3, pp.1544-1549, 1021.
DOI : 10.1021/jm501170d

J. Annes, Y. Chen, J. Munger, and D. Rifkin, -mediated activation of latent TGF-?? requires the latent TGF-?? binding protein-1, The Journal of Cell Biology, vol.269, issue.5, pp.723-734, 2004.
DOI : 10.1073/pnas.87.22.8835

URL : https://hal.archives-ouvertes.fr/hal-01465076

W. Yang, Y. Zhang, Y. Li, Z. Wu, and D. Zhu, Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/ AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1, J Biol Chem, vol.282, pp.3799-3808, 2007.

P. Gleizes, R. Beavis, R. Mazzieri, B. Shen, and D. Rifkin, Identification and Characterization of an Eight-cysteine Repeat of the Latent Transforming Growth Factor-?? Binding Protein-1 that Mediates Bonding to the Latent Transforming Growth Factor-??1, Journal of Biological Chemistry, vol.271, issue.47, pp.29891-29896, 1996.
DOI : 10.1074/jbc.271.47.29891

J. Saharinen, J. Taipale, and J. Keski-oja, Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1, EMBO J, vol.15, pp.245-253, 1996.

K. Miyazono, A. Olofsson, P. Colosetti, and C. Heldin, A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1

G. Sengle, R. Ono, T. Sasaki, and L. Sakai, Prodomains of Transforming Growth Factor ?? (TGF??) Superfamily Members Specify Different Functions, Journal of Biological Chemistry, vol.286, issue.7, pp.5087-5099, 2011.
DOI : 10.1074/jbc.M110.188615

O. Andersson, E. Reissmann, H. Jörnvall, and C. Ibáñez, Synergistic interaction between Gdf1 and Nodal during anterior axis development, Developmental Biology, vol.293, issue.2, pp.370-381, 2006.
DOI : 10.1016/j.ydbio.2006.02.002

A. Rebbapragada, H. Benchabane, J. Wrana, A. Celeste, and L. Attisano, Myostatin Signals through a Transforming Growth Factor ??-Like Signaling Pathway To Block Adipogenesis, Molecular and Cellular Biology, vol.23, issue.20, pp.7230-7242, 2003.
DOI : 10.1128/MCB.23.20.7230-7242.2003

J. Groppe, C. Hinck, P. Samavarchi-tehrani, C. Zubieta, J. Schuermann et al., Cooperative Assembly of TGF-?? Superfamily Signaling Complexes Is Mediated by Two Disparate Mechanisms and Distinct Modes of Receptor Binding, Molecular Cell, vol.29, issue.2, pp.157-168, 2008.
DOI : 10.1016/j.molcel.2007.11.039

G. Allendorph, W. Vale, and S. Choe, Structure of the ternary signaling complex of a TGF-beta superfamily member, Proceedings of the National Academy of Sciences, vol.103, issue.20, pp.7643-7648, 2006.
DOI : 10.1073/pnas.0602558103

S. Radaev, Z. Zou, T. Huang, E. Lafer, A. Hinck et al., Ternary Complex of Transforming Growth Factor-??1 Reveals Isoform-specific Ligand Recognition and Receptor Recruitment in the Superfamily, Journal of Biological Chemistry, vol.285, issue.19, pp.14806-14814, 2010.
DOI : 10.1074/jbc.M109.079921

T. Thompson, T. Woodruff, and T. Jardetzky, Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions, The EMBO Journal, vol.22, issue.7, pp.1555-1566, 2003.
DOI : 10.1093/emboj/cdg156

S. Keller, J. Nickel, J. Zhang, W. Sebald, and T. Mueller, Molecular recognition of BMP-2 and BMP receptor IA, Nature Structural & Molecular Biology, vol.11, issue.5, pp.481-488, 2004.
DOI : 10.1107/S0907444998017363

J. Babitt, F. Huang, D. Wrighting, Y. Xia, Y. Sidis et al., Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression, Nature Genetics, vol.259, issue.5, pp.531-539, 1038.
DOI : 10.1007/BF02100994

J. Babitt, Y. Zhang, T. Samad, Y. Xia, J. Tang et al., Repulsive Guidance Molecule (RGMa), a DRAGON Homologue, Is a Bone Morphogenetic Protein Co-receptor, Journal of Biological Chemistry, vol.280, issue.33, pp.29820-29827, 2005.
DOI : 10.1074/jbc.M503511200

C. Bianco, H. Adkins, C. Wechselberger, M. Seno, N. Normanno et al., Cripto-1 Activates Nodal- and ALK4-Dependent and -Independent Signaling Pathways in Mammary Epithelial Cells, Molecular and Cellular Biology, vol.22, issue.8, pp.2586-2597, 2002.
DOI : 10.1128/MCB.22.8.2586-2597.2002

S. Cheifetz, T. Bellón, C. Calés, S. Vera, C. Bernabeu et al., Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells, J Biol Chem, vol.267, pp.19027-19030, 1992.

K. Finnson, B. Tam, K. Liu, A. Marcoux, P. Lepage et al., Identification of CD109 as part of the TGF-?? receptor system in human keratinocytes, The FASEB Journal, vol.20, issue.9, pp.1525-1527, 2006.
DOI : 10.1096/fj.05-5229fje

O. Guardiola, P. Lafuste, and S. Brunelli, Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin, Proceedings of the National Academy of Sciences, vol.109, issue.47, pp.3231-3240, 2012.
DOI : 10.1073/pnas.1204017109

URL : https://hal.archives-ouvertes.fr/inserm-00769969

D. Kemaladewi, D. De-gorter, A. Aartsma-rus, G. Van-ommen, P. Ten-dijke et al., Cell-type specific regulation of myostatin signaling, The FASEB Journal, vol.26, issue.4, pp.1462-1472, 2012.
DOI : 10.1096/fj.11-191189

T. Samad, A. Rebbapragada, E. Bell, Y. Zhang, Y. Sidis et al., DRAGON, a Bone Morphogenetic Protein Co-receptor, Journal of Biological Chemistry, vol.280, issue.14, pp.14122-14129, 2005.
DOI : 10.1074/jbc.M410034200

J. Hill, Y. Qiu, R. Hewick, and N. Wolfman, by Growth and Differentiation Factor-Associated Serum Protein-1: A Novel Protein with Protease Inhibitor and Follistatin Domains, Molecular Endocrinology, vol.17, issue.6, pp.1144-1154, 1210.
DOI : 10.1210/me.2002-0366

Y. Sidis, A. Mukherjee, H. Keutmann, A. Delbaere, M. Sadatsuki et al., Biological Activity of Follistatin Isoforms and Follistatin-Like-3 Is Dependent on Differential Cell Surface Binding and Specificity for Activin, Myostatin, and Bone Morphogenetic Proteins, Endocrinology, vol.147, issue.7, pp.3586-3597, 2006.
DOI : 10.1210/en.2006-0089

H. Amthor, G. Nicholas, I. Mckinnell, C. Kemp, M. Sharma et al., Follistatin complexes Myostatin and antagonises Myostatinmediated inhibition of myogenesis, Dev Biol, vol.270, 2004.

T. Miura, Y. Kishioka, J. Wakamatsu, A. Hattori, A. Hennebry et al., Decorin binds myostatin and modulates its activity to muscle cells, Biochemical and Biophysical Research Communications, vol.340, issue.2, pp.675-680, 2006.
DOI : 10.1016/j.bbrc.2005.12.060

J. Hill, M. Davies, A. Pearson, J. Wang, R. Hewick et al., The Myostatin Propeptide and the Follistatin-related Gene Are Inhibitory Binding Proteins of Myostatin in Normal Serum, Journal of Biological Chemistry, vol.277, issue.43, pp.40735-40741, 2002.
DOI : 10.1074/jbc.M206379200

J. Cash, E. Angerman, H. Keutmann, and T. Thompson, Characterization of Follistatin-Type Domains and Their Contribution to Myostatin and Activin A Antagonism, Molecular Endocrinology, vol.26, issue.7, pp.1167-1178, 1210.
DOI : 10.1210/me.2012-1061

R. Stamler, H. Keutmann, Y. Sidis, C. Kattamuri, A. Schneyer et al., The Structure of FSTL3{middle dot}Activin A Complex: DIFFERENTIAL BINDING OF N-TERMINAL DOMAINS INFLUENCES FOLLISTATIN-TYPE ANTAGONIST SPECIFICITY, Journal of Biological Chemistry, vol.283, issue.47, pp.32831-32838, 2008.
DOI : 10.1074/jbc.M801266200

T. Thompson, T. Lerch, R. Cook, T. Woodruff, and T. Jardetzky, The Structure of the Follistatin:Activin Complex Reveals Antagonism of Both Type I and Type II Receptor Binding, Developmental Cell, vol.9, issue.4, pp.535-543, 2005.
DOI : 10.1016/j.devcel.2005.09.008

A. Datta-mannan, B. Yaden, V. Krishnan, B. Jones, and J. Croy, An Engineered Human Follistatin Variant: Insights into the Pharmacokinetic and Pharmocodynamic Relationships of a Novel Molecule with Broad Therapeutic Potential, Journal of Pharmacology and Experimental Therapeutics, vol.344, issue.3, pp.616-623, 2013.
DOI : 10.1124/jpet.112.201491

C. Winbanks, K. Weeks, R. Thomson, P. Sepulveda, C. Beyer et al., Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin, The Journal of Cell Biology, vol.272, issue.7, pp.997-1008, 2012.
DOI : 10.1126/science.1069525

Y. Sidis, A. Schneyer, and H. Keutmann, Heparin and Activin-Binding Determinants in Follistatin and FSTL3, Endocrinology, vol.146, issue.1, pp.130-136, 2005.
DOI : 10.1210/en.2004-1041

R. Walker, E. Angerman, C. Kattamuri, Y. Lee, S. Lee et al., Alternative Binding Modes Identified for Growth and Differentiation Factor-associated Serum Protein (GASP) Family Antagonism of Myostatin, Journal of Biological Chemistry, vol.290, issue.12, pp.7506-7516, 2015.
DOI : 10.1074/jbc.M114.624130

G. Szláma, K. Kondás, M. Trexler, and L. Patthy, WFIKKN1 and WFIKKN2 bind growth factors TGF??1, BMP2 and BMP4 but do not inhibit their signalling activity, FEBS Journal, vol.46, issue.24, 2010.
DOI : 10.1111/j.1742-4658.2010.07909.x

Y. Lee and S. Lee, Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2, Proceedings of the National Academy of Sciences, vol.110, issue.39, pp.3713-3722, 2013.
DOI : 10.1073/pnas.1309907110

K. Kondás, G. Szláma, M. Trexler, and L. Patthy, Both WFIKKN1 and WFIKKN2 Have High Affinity for Growth and Differentiation Factors 8 and 11, Journal of Biological Chemistry, vol.283, issue.35, pp.23677-23684, 2008.
DOI : 10.1074/jbc.M803025200

M. Trexler, L. Bányai, and L. Patthy, A human protein containing multiple types of protease-inhibitory modules, Proceedings of the National Academy of Sciences, vol.98, issue.7, pp.3705-3709, 2001.
DOI : 10.1073/pnas.061028398

G. Szláma, M. Trexler, and L. Patthy, Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2, FEBS Journal, vol.315, issue.16, pp.3822-3839, 2013.
DOI : 10.1111/febs.12377

J. Massagué, TGF?? signalling in context, Nature Reviews Molecular Cell Biology, vol.18, issue.10, pp.616-630, 2012.
DOI : 10.1038/nrm3434

M. Macias, P. Martin-malpartida, and J. Massagué, Structural determinants of Smad function in TGF-?? signaling, Trends in Biochemical Sciences, vol.40, issue.6, pp.296-308, 2015.
DOI : 10.1016/j.tibs.2015.03.012

B. Philip, Z. Lu, and Y. Gao, Regulation of GDF-8 signaling by the p38 MAPK, Cellular Signalling, vol.17, issue.3, pp.365-375, 2005.
DOI : 10.1016/j.cellsig.2004.08.003

W. Yang, Y. Chen, Y. Zhang, X. Wang, N. Yang et al., Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Pathway Is Involved in Myostatin-Regulated Differentiation Repression, Cancer Research, vol.66, issue.3, pp.1320-1326, 2006.
DOI : 10.1158/0008-5472.CAN-05-3060

M. Egerman, S. Cadena, and J. Gilbert, GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration, Cell Metabolism, vol.22, issue.1, pp.164-174, 2015.
DOI : 10.1016/j.cmet.2015.05.010

H. Shih, B. Lee, R. Lee, and A. Boyle, The Aging Heart and Post-Infarction Left Ventricular Remodeling, Journal of the American College of Cardiology, vol.57, issue.1, pp.9-17, 2011.
DOI : 10.1016/j.jacc.2010.08.623

A. Maggioni, A. Maseri, C. Fresco, M. Franzosi, F. Mauri et al., Age-Related Increase in Mortality among Patients with First Myocardial Infarctions Treated with Thrombolysis, New England Journal of Medicine, vol.329, issue.20, pp.1442-1448, 1993.
DOI : 10.1056/NEJM199311113292002

M. Dobaczewski, W. Chen, and N. Frangogiannis, Transforming growth factor (TGF)-?? signaling in cardiac remodeling, Journal of Molecular and Cellular Cardiology, vol.51, issue.4, pp.600-606, 2011.
DOI : 10.1016/j.yjmcc.2010.10.033

N. Koitabashi, T. Danner, A. Zaiman, Y. Pinto, J. Rowell et al., Pivotal role of cardiomyocyte TGF-?? signaling in the murine pathological response to sustained pressure overload, Journal of Clinical Investigation, vol.121, issue.6, pp.2301-2312, 2011.
DOI : 10.1172/JCI44824DS1

M. Sharma, R. Kambadur, K. Matthews, W. Somers, G. Devlin et al., Myostatin, a transforming growth factor-? superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct, Journal of Cellular Physiology, vol.54, issue.1, pp.1-9, 1999.
DOI : 10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V

I. George, L. Bish, G. Kamalakkannan, C. Petrilli, M. Oz et al., Myostatin activation in patients with advanced heart failure and after mechanical unloading, European Journal of Heart Failure, vol.355, issue.5, pp.444-453, 2010.
DOI : 10.1093/eurjhf/hfq039

L. Bish, I. George, S. Maybaum, Y. J. Chen, J. Sweeney et al., Myostatin Is Elevated in Congenital Heart Disease and After Mechanical Unloading, PLoS ONE, vol.94, issue.9, 2011.
DOI : 10.1371/journal.pone.0023818.t002

E. Castillero, H. Akashi, C. Wang, M. Najjar, J. R. Kennel et al., Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy, Biochemical and Biophysical Research Communications, vol.457, issue.1, pp.106-111, 2015.
DOI : 10.1016/j.bbrc.2014.12.057

R. Cohn, H. Liang, R. Shetty, T. Abraham, and K. Wagner, Myostatin does not regulate cardiac hypertrophy or fibrosis, Neuromuscular Disorders, vol.17, issue.4, pp.290-296, 2007.
DOI : 10.1016/j.nmd.2007.01.011

C. Mendias, K. Bakhurin, J. Gumucio, M. Shallal-ayzin, C. Davis et al., Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice, Aging Cell, vol.589, issue.4, pp.704-706, 2015.
DOI : 10.1111/acel.12339

M. Morissette, J. Stricker, M. Rosenberg, C. Buranasombati, E. Levitan et al., Effects of myostatin deletion in aging mice, Aging Cell, vol.6, issue.5, pp.573-583, 2009.
DOI : 10.1111/j.1474-9726.2009.00508.x

S. Smith, X. Zhang, and X. Zhang, GDF11 Does Not Rescue Aging-Related Pathological HypertrophyNovelty and Significance, Circulation Research, vol.117, issue.11, pp.926-932, 2015.
DOI : 10.1161/CIRCRESAHA.115.307527

T. Poggioli, A. Vujic, and P. Yang, Circulating Growth Differentiation Factor 11/8 Levels Decline With AgeNovelty and Significance, Circulation Research, vol.118, issue.1, pp.29-37, 2016.
DOI : 10.1161/CIRCRESAHA.115.307521

E. Mcnally, Questions and Answers About Myostatin, GDF11, and the Aging Heart, Circulation Research, vol.118, issue.1, 2016.
DOI : 10.1161/CIRCRESAHA.115.307861

M. Shimano, N. Ouchi, K. Nakamura, Y. Oshima, A. Higuchi et al., Cardiac Myocyte-specific Ablation of Follistatin-like 3 Attenuates Stress-induced Myocardial Hypertrophy, Journal of Biological Chemistry, vol.286, issue.11, pp.9840-9848, 2011.
DOI : 10.1074/jbc.M110.197079

E. Lara-pezzi, L. Felkin, E. Birks, P. Sarathchandra, K. Panse et al., Expression of Follistatin-Related Genes Is Altered in Heart Failure, Endocrinology, vol.149, issue.11, pp.5822-5827, 1210.
DOI : 10.1210/en.2008-0151

A. Mukherjee, Y. Sidis, A. Mahan, M. Raher, Y. Xia et al., FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults, Proceedings of the National Academy of Sciences, vol.104, issue.4, pp.1348-1353, 2007.
DOI : 10.1073/pnas.0607966104

Y. Oshima, N. Ouchi, M. Shimano, D. Pimentel, K. Papanicolaou et al., Activin A and Follistatin-Like 3 Determine the Susceptibility of Heart to Ischemic Injury, Circulation, vol.120, issue.16, pp.1606-1615, 2009.
DOI : 10.1161/CIRCULATIONAHA.109.872200

K. Panse, L. Felkin, M. López-olañeta, J. Gómez-salinero, M. Villalba et al., Follistatin-Like 3 Mediates Paracrine Fibroblast Activation by Cardiomyocytes, Journal of Cardiovascular Translational Research, vol.106, issue.6, pp.814-826, 2012.
DOI : 10.1007/s12265-012-9400-9

Y. Shi and J. Massagué, Mechanisms of TGF-?? Signaling from Cell Membrane to the Nucleus, Cell, vol.113, issue.6, pp.685-700, 2003.
DOI : 10.1016/S0092-8674(03)00432-X

D. Garikipati and B. Rodgers, Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing, Journal of Endocrinology, vol.215, issue.1, pp.177-187, 2012.
DOI : 10.1530/JOE-12-0260

R. George, S. Biressi, B. Beres, E. Rogers, A. Mulia et al., Numb-deficient satellite cells have regeneration and proliferation defects, Proceedings of the National Academy of Sciences, vol.110, issue.46, pp.18549-18554, 2013.
DOI : 10.1073/pnas.1311628110

H. Amthor, A. Otto, A. Vulin, A. Rochat, J. Dumonceaux et al., Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity, Proceedings of the National Academy of Sciences, vol.106, issue.18, pp.7479-7484, 2009.
DOI : 10.1073/pnas.0811129106

S. Lee, T. Huynh, Y. Lee, S. Sebald, S. Wilcox-adelman et al., Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway, Proceedings of the National Academy of Sciences, vol.109, issue.35, pp.2353-2360, 2012.
DOI : 10.1073/pnas.1206410109

S. Mccroskery, M. Thomas, L. Maxwell, M. Sharma, and R. Kambadur, Myostatin negatively regulates satellite cell activation and self-renewal, The Journal of Cell Biology, vol.111, issue.6
DOI : 10.1016/S0014-5793(00)01570-2

A. Durieux, A. Amirouche, S. Banzet, N. Koulmann, R. Bonnefoy et al., Ectopic Expression of Myostatin Induces Atrophy of Adult Skeletal Muscle by Decreasing Muscle Gene Expression, Endocrinology, vol.148, issue.7, pp.3140-3147, 2007.
DOI : 10.1210/en.2006-1500

URL : https://hal.archives-ouvertes.fr/inserm-00387979

T. Zimmers, M. Davies, L. Koniaris, P. Haynes, A. Esquela et al., Induction of Cachexia in Mice by Systemically Administered Myostatin, Science, vol.296, issue.5572, pp.1486-1488, 2002.
DOI : 10.1126/science.1069525

L. Stolz, D. Li, A. Qadri, M. Jalenak, L. Klaman et al., Administration of myostatin does not alter fat mass in adult mice, Diabetes, Obesity and Metabolism, vol.285, issue.0, pp.135-142, 2008.
DOI : 10.1073/pnas.151270098

E. Lach-trifilieff, G. Minetti, K. Sheppard, C. Ibebunjo, J. Feige et al., An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy, Molecular and Cellular Biology, vol.34, issue.4, pp.606-618, 2014.
DOI : 10.1128/MCB.01307-13

L. Gamer, K. Cox, C. Small, and V. Rosen, Gdf11 Is a Negative Regulator of Chondrogenesis and Myogenesis in the Developing Chick Limb, Developmental Biology, vol.229, issue.2, pp.407-420, 2000.
DOI : 10.1006/dbio.2000.9981

A. Trendelenburg, A. Meyer, D. Rohner, J. Boyle, S. Hatakeyama et al., Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size, AJP: Cell Physiology, vol.296, issue.6, pp.1258-1270, 2009.
DOI : 10.1152/ajpcell.00105.2009

F. Jeanplong, S. Falconer, M. Thomas, K. Matthews, J. Oldham et al., Growth and differentiation factor-11 is developmentally regulated in skeletal muscle and inhibits myoblast differentiation, Open Journal of Molecular and Integrative Physiology, vol.02, issue.04, pp.127-138, 2012.
DOI : 10.4236/ojmip.2012.24018

A. Polesskaya, P. Seale, and M. Rudnicki, Wnt Signaling Induces the Myogenic Specification of Resident CD45+ Adult Stem Cells during Muscle Regeneration, Cell, vol.113, issue.7, pp.841-852, 2003.
DOI : 10.1016/S0092-8674(03)00437-9

L. Boldrin, A. Neal, P. Zammit, F. Muntoni, and J. Morgan, Donor Satellite Cell Engraftment Is SignificantlyAugmented When the Host Niche Is Preserved and Endogenous Satellite Cells Are Incapacitated, STEM CELLS, vol.316, issue.Pt 3, pp.1971-1984, 2012.
DOI : 10.1002/stem.1158

B. Gayraud-morel, F. Chrétien, P. Flamant, D. Gomès, P. Zammit et al., A role for the myogenic determination gene Myf5 in adult regenerative myogenesis, Developmental Biology, vol.312, issue.1, pp.13-28, 2007.
DOI : 10.1016/j.ydbio.2007.08.059

B. Gayraud-morel, F. Chrétien, and S. Tajbakhsh, Skeletal muscle as a paradigm for regenerative biology and medicine, Regenerative Medicine, vol.4, issue.2, pp.293-319, 2009.
DOI : 10.2217/17460751.4.2.293

K. Liadaki, J. Casar, M. Wessen, E. Luth, S. Jun et al., ??4 Integrin Marks Interstitial Myogenic Progenitor Cells in Adult Murine Skeletal Muscle, Journal of Histochemistry & Cytochemistry, vol.268, issue.2, pp.31-44, 2012.
DOI : 10.1007/s004410100417

J. Kovacic, P. Moreno, E. Nabel, V. Hachinski, and V. Fuster, Cellular Senescence, Vascular Disease, and Aging: Part 2 of a 2-Part Review: Clinical Vascular Disease in the Elderly, Circulation, vol.123, issue.17, 1900.
DOI : 10.1161/CIRCULATIONAHA.110.009118

H. Bergen, . Iii, J. Farr, P. Vanderboom, E. Atkinson et al., Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay, Skeletal Muscle, vol.26, issue.2, 2015.
DOI : 10.1186/s13395-015-0047-5

Y. Zhou, Z. Jiang, E. Harris, J. Reeves, X. Chen et al., Circulating concentrations of growth differentiation factor 11 are heritable and correlate with life span [published online ahead of print, 2016.

F. Demontis, V. Patel, W. Swindell, and N. Perrimon, Intertissue Control of the Nucleolus via a Myokine-Dependent Longevity Pathway, Cell Reports, vol.7, issue.5, pp.1481-1494, 2014.
DOI : 10.1016/j.celrep.2014.05.001

J. Lee, J. Momani, Y. Kim, C. Kang, J. Choi et al., Effective RNA-silencing strategy of Lv-MSTN/GDF11 gene and its effects on the growth in shrimp, Litopenaeus vannamei, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.179, pp.9-16, 2015.
DOI : 10.1016/j.cbpb.2014.09.005

Y. Shi and J. Liu, Gdf11 Facilitates Temporal Progression of Neurogenesis in the Developing Spinal Cord, Journal of Neuroscience, vol.31, issue.3, pp.883-893, 2011.
DOI : 10.1523/JNEUROSCI.2394-10.2011

J. Liu, E. Laufer, and T. Jessell, Assigning the Positional Identity of Spinal Motor Neurons, Neuron, vol.32, issue.6, pp.997-1012, 2001.
DOI : 10.1016/S0896-6273(01)00544-X

J. Liu, The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord, Development, vol.133, issue.15, pp.2865-2874, 2006.
DOI : 10.1242/dev.02478

S. Villeda, K. Plambeck, and J. Middeldorp, Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice, Nature Medicine, vol.13, issue.6, pp.659-663, 2014.
DOI : 10.1038/nprot.2006.275

Y. He, H. Zhang, A. Yung, S. Villeda, P. Jaeger et al., ALK5-dependent TGF-?? signaling is a major determinant of late-stage adult neurogenesis, Nature Neuroscience, vol.64, issue.7, pp.943-952, 2014.
DOI : 10.1037/a0026033

T. Brionne, I. Tesseur, E. Masliah, and T. Wyss-coray, Loss of TGF-??1 Leads to Increased Neuronal Cell Death and Microgliosis in Mouse Brain, Neuron, vol.40, issue.6, pp.1133-1145, 2003.
DOI : 10.1016/S0896-6273(03)00766-9

I. Tesseur, K. Zou, L. Esposito, F. Bard, E. Berber et al., Deficiency in neuronal TGF-?? signaling promotes neurodegeneration and Alzheimer???s pathology, Journal of Clinical Investigation, vol.116, issue.11, pp.3060-3069, 1172.
DOI : 10.1172/JCI27341

S. Li, E. Nie, Y. Yin, L. Benowitz, S. Tung et al., GDF10 is a signal for axonal sprouting and functional recovery after stroke, Nature Neuroscience, vol.2012, issue.12, pp.1737-1745, 2015.
DOI : 10.1093/bioinformatics/btp616

K. Olson, A. Beatty, and B. Heidecker, Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts, European Heart Journal, vol.36, issue.48, pp.3426-3434, 2015.
DOI : 10.1093/eurheartj/ehv385

B. Heidecker, K. Olson, A. Beatty, R. Dubin, S. Kato et al., Low levels of growth differentiation factor 11 and high levels of its inhibitor follitatin-like 3 are associated with adverse cardiovascular outcomes in humans, J Am Coll Cardiol, vol.65, p.10, 2015.

R. Paulson, Targeting a new regulator of erythropoiesis to alleviate anemia, Nature Medicine, vol.20, issue.4, pp.334-335, 2014.
DOI : 10.1359/jbmr.081208

J. Arlet, M. Dussiot, I. Moura, H. O. Courtois, and G. , Novel players in beta-thalassemia dyserythropoiesis and new therapeutic strategies. Current opinion in hematology, 2016.

T. Burks, E. Andres-mateos, R. Marx, R. Mejias, C. Van-erp et al., Losartan Restores Skeletal Muscle Remodeling and Protects Against Disuse Atrophy in Sarcopenia, Science Translational Medicine, vol.3, issue.82, 2011.
DOI : 10.1126/scitranslmed.3002227

A. Brack, M. Conboy, S. Roy, M. Lee, C. Kuo et al., Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis, Science, vol.317, issue.5839, pp.807-810, 2007.
DOI : 10.1126/science.1144090

M. Xu, A. Palmer, H. Ding, M. Weivoda, T. Pirtskhalava et al., Author response, eLife, vol.14, pp.12997-13007, 2015.
DOI : 10.7554/eLife.12997.028

A. Naito, T. Sumida, and S. Nomura, Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes, Cell, vol.149, issue.6, pp.1298-1313, 2012.
DOI : 10.1016/j.cell.2012.03.047

L. Gold, D. Ayers, and J. Bertino, Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery, PLoS ONE, vol.130, issue.11, 2010.
DOI : 10.1371/journal.pone.0015004.s008

Y. Hathout, E. Brody, and P. Clemens, Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy, Proceedings of the National Academy of Sciences, vol.112, issue.23, pp.7153-7158, 2015.
DOI : 10.1073/pnas.1507719112

S. Natsuume-sakai, K. Motonishi, and S. Migita, Quantitative estimations of five classes of immunoglobulin in inbred mouse strains, Immunology, vol.32, pp.861-866, 1977.

B. Rodgers and J. Eldridge, Reduced Circulating GDF11 Is Unlikely Responsible for Age-Dependent Changes in Mouse Heart, Muscle, and Brain, Endocrinology, vol.156, issue.11, pp.3885-3888, 1210.
DOI : 10.1210/en.2015-1628

T. Souza, X. Chen, Y. Guo, P. Sava, J. Zhang et al., Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators

M. Jedrychowski, C. Wrann, J. Paulo, K. Gerber, J. Szpyt et al., Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry, Cell Metabolism, vol.22, issue.4, pp.734-740, 2015.
DOI : 10.1016/j.cmet.2015.08.001

A. Breitbart, G. Scharf, D. Duncker, C. Widera, J. Gottlieb et al., Highly Specific Detection of Myostatin Prodomain by an Immunoradiometric Sandwich Assay in Serum of Healthy Individuals and Patients, PLoS ONE, vol.17, issue.11, 2013.
DOI : 10.1371/journal.pone.0080454.s007

T. White and N. Lebrasseur, Myostatin and Sarcopenia: Opportunities and Challenges - A Mini-Review, Gerontology, vol.60, issue.4, pp.289-293, 2014.
DOI : 10.1159/000356740

I. Conboy, M. Conboy, A. Wagers, E. Girma, I. Weissman et al., Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, vol.31, issue.7027, pp.760-764, 2005.
DOI : 10.1083/jcb.151.6.1221

P. Lopez-jaramillo, The Role of Adiponectin in Cardiometabolic Diseases: Effects of Nutritional Interventions, Journal of Nutrition, vol.146, issue.2, pp.422-426, 2016.
DOI : 10.3945/jn.114.202432

J. Parker-duffen and K. Walsh, Cardiometabolic effects of adiponectin, Best Practice & Research Clinical Endocrinology & Metabolism, vol.28, issue.1, pp.81-91, 2014.
DOI : 10.1016/j.beem.2013.09.001

J. Dong, Y. Dong, Y. Dong, F. Chen, W. Mitch et al., Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues, International Journal of Obesity, vol.3, issue.3, pp.432-442, 2016.
DOI : 10.1210/en.2012-1016

T. Shan, X. Liang, P. Bi, and S. Kuang, Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1??-Fndc5 pathway in muscle, The FASEB Journal, vol.27, issue.5, pp.1981-1989, 2013.
DOI : 10.1096/fj.12-225755

F. Loffredo, M. Steinhauser, and S. Jay, Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy, Cell, vol.153, issue.4, pp.828-839, 2013.
DOI : 10.1016/j.cell.2013.04.015

M. Sinha, Y. Jang, and J. Oh, Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle, Science, vol.344, issue.6184, pp.649-652, 2014.
DOI : 10.1126/science.1251152

T. Poggioli, A. Vujic, and P. Yang, Circulating Growth Differentiation Factor 11/8 Levels Decline With AgeNovelty and Significance, Circulation Research, vol.118, issue.1, pp.29-37, 2016.
DOI : 10.1161/CIRCRESAHA.115.307521

M. Egerman, S. Cadena, and J. Gilbert, GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration, Cell Metabolism, vol.22, issue.1, pp.164-174, 2015.
DOI : 10.1016/j.cmet.2015.05.010

S. Smith, X. Zhang, and X. Zhang, GDF11 Does Not Rescue Aging-Related Pathological HypertrophyNovelty and Significance, Circulation Research, vol.117, issue.11, pp.926-932, 2015.
DOI : 10.1161/CIRCRESAHA.115.307527

A. Breitbart, M. Auger-messier, J. Molkentin, and J. Heineke, Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting, AJP: Heart and Circulatory Physiology, vol.300, issue.6, pp.1973-1982, 2011.
DOI : 10.1152/ajpheart.00200.2011

E. Castillero, H. Akashi, C. Wang, M. Najjar, J. R. Kennel et al., Cardiac myostatin upregulation occurs immediately after myocardial ischemia and is involved in skeletal muscle activation of atrophy, Biochemical and Biophysical Research Communications, vol.457, issue.1, pp.106-111, 2015.
DOI : 10.1016/j.bbrc.2014.12.057

J. Heineke, M. Auger-messier, J. Xu, M. Sargent, A. York et al., Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure, Circulation, vol.121, issue.3, pp.419-425, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.882068

H. Kollias and J. Mcdermott, Transforming growth factor-?? and myostatin signaling in skeletal muscle, Journal of Applied Physiology, vol.104, issue.3, pp.579-587, 1985.
DOI : 10.1152/japplphysiol.01091.2007

A. Mcpherron, Metabolic Functions of Myostatin and GDF11, Immunology??? Endocrine & Metabolic Agents in Medicinal Chemistry, vol.10, issue.4, pp.217-231, 2010.
DOI : 10.2174/187152210793663810

A. Mcpherron, T. Huynh, and S. Lee, Redundancy of myostatin and growth/differentiation factor 11 function, BMC Developmental Biology, vol.9, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1471-213X-9-24

T. Souza, X. Chen, Y. Guo, P. Sava, J. Zhang et al., Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators

Y. Lee and S. Lee, Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2, Proceedings of the National Academy of Sciences, vol.110, issue.39, pp.3713-3722, 2013.
DOI : 10.1073/pnas.1309907110

©. Copyright, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, American Heart Association, vol.118, pp.1125-1142, 2016.