L. Kohl and P. Bastin, The Flagellum of Trypanosomes, Int. Rev. Cytol, vol.244, pp.227-285, 2005.
DOI : 10.1016/S0074-7696(05)44006-1

URL : https://hal.archives-ouvertes.fr/hal-00109408

T. Avidor-reiss, A. M. Maer, E. Koundakjian, A. Polyanovsky, T. Keil et al., Decoding Cilia Function, Cell, vol.117, issue.4, pp.527-539, 2004.
DOI : 10.1016/S0092-8674(04)00412-X

J. B. Li, J. M. Gerdes, C. J. Haycraft, Y. Fan, T. M. Teslovich et al., Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene, Cell, vol.117, issue.4, pp.541-552, 2004.
DOI : 10.1016/S0092-8674(04)00450-7

R. Broadhead, H. R. Dawe, H. Farr, S. Griffiths, S. R. Hart et al., Flagellar motility is required for the viability of the bloodstream trypanosome, Nature, vol.323, issue.7081, pp.224-227, 2006.
DOI : 10.1038/nature04541

G. J. Pazour, N. Agrin, J. Leszyk, and G. B. Witman, Proteomic analysis of a eukaryotic cilium, The Journal of Cell Biology, vol.63, issue.1, pp.103-113, 2005.
DOI : 10.1242/jcs.01297

L. E. Ostrowski, K. Blackburn, K. M. Radde, M. B. Moyer, D. M. Schlatzer et al., A Proteomic Analysis of Human Cilia: Identification of Novel Components, Molecular & Cellular Proteomics, vol.1, issue.6, pp.451-465, 2002.
DOI : 10.1074/mcp.M200037-MCP200

M. Oberholzer, G. Langousis, H. T. Nguyen, E. A. Saada, M. M. Shimogawa et al., Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei, Proteomics : MCP 10, pp.111-010538, 2011.
DOI : 10.1074/mcp.M111.010538

P. G. Czarnecki and J. V. Shah, The ciliary transition zone: from morphology and molecules to medicine, Trends in Cell Biology, vol.22, issue.4, pp.201-210, 2012.
DOI : 10.1016/j.tcb.2012.02.001

J. A. Deane, D. G. Cole, E. S. Seeley, D. R. Diener, and J. L. Rosenbaum, Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles, Current Biology, vol.11, issue.20, pp.1586-1590, 2001.
DOI : 10.1016/S0960-9822(01)00484-5

B. Craige, C. C. Tsao, D. R. Diener, Y. Hou, K. F. Lechtreck et al., CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content, The Journal of Cell Biology, vol.59, issue.5, pp.927-940, 2010.
DOI : 10.1083/jcb.54.3.507

B. Chih, P. Liu, Y. Chinn, C. Chalouni, L. G. Komuves et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain, Nature Cell Biology, vol.127, issue.1, pp.61-72, 2012.
DOI : 10.1038/nbt.1644

H. L. Kee, J. F. Dishinger, T. L. Blasius, C. J. Liu, B. Margolis et al., A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia, Nature Cell Biology, vol.19, issue.4, pp.431-437, 2012.
DOI : 10.1083/jcb.201001057

Q. Hu, L. Milenkovic, H. Jin, M. P. Scott, M. V. Nachury et al., A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution, Science, vol.329, issue.5990, pp.436-439, 2010.
DOI : 10.1126/science.1191054

L. Vincensini, T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella, Biology of the Cell, vol.69, issue.3, pp.109-130, 2011.
DOI : 10.1042/BC20100104

J. J. Moser, M. J. Fritzler, and J. B. Rattner, Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells, BMC Cancer, vol.115, issue.1, p.448, 2009.
DOI : 10.1016/S0166-6851(01)00262-6

A. Molla-herman, R. Ghossoub, T. Blisnick, A. Meunier, C. Serres et al., The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia, Journal of Cell Science, vol.123, issue.10, pp.1785-1795, 2010.
DOI : 10.1242/jcs.059519

N. Portman and K. Gull, The paraflagellar rod of kinetoplastid parasites: From structure to components and function, International Journal for Parasitology, vol.40, issue.2, pp.135-148, 2010.
DOI : 10.1016/j.ijpara.2009.10.005

N. Portman, S. Lacomble, B. Thomas, P. G. Mckean, and K. Gull, Combining RNA Interference Mutants and Comparative Proteomics to Identify Protein Components and Dependences in a Eukaryotic Flagellum, Journal of Biological Chemistry, vol.284, issue.9, 2009.
DOI : 10.1074/jbc.M808859200

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypanosome motility, Nature, vol.391, issue.6667, p.548, 1998.
DOI : 10.1038/35300

C. Santrich, L. Moore, T. Sherwin, P. Bastin, C. Brokaw et al., A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts, Molecular and Biochemical Parasitology, vol.90, issue.1, pp.95-109, 1997.
DOI : 10.1016/S0166-6851(97)00149-7

L. Kohl and K. Gull, Molecular architecture of the trypanosome cytoskeleton, Molecular and Biochemical Parasitology, vol.93, issue.1, pp.1-9, 1998.
DOI : 10.1016/S0166-6851(98)00014-0

S. Vaughan, L. Kohl, I. Ngai, R. J. Wheeler, and K. Gull, A Repetitive Protein Essential for the Flagellum Attachment Zone Filament Structure and Function in Trypanosoma brucei, Protist, vol.159, issue.1, pp.127-136, 2008.
DOI : 10.1016/j.protis.2007.08.005

Q. Zhou, B. Liu, Y. Sun, and C. Y. He, A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei, Journal of Cell Science, vol.124, issue.22, pp.3848-3858, 2011.
DOI : 10.1242/jcs.087676

T. Sherwin and K. Gull, The Cell Division Cycle of Trypanosoma brucei brucei: Timing of Event Markers and Cytoskeletal Modulations, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.323, issue.1218, pp.573-588, 1989.
DOI : 10.1098/rstb.1989.0037

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, Journal of Cell Science, vol.119, issue.16, pp.3443-3455, 2006.
DOI : 10.1242/jcs.03078

URL : https://hal.archives-ouvertes.fr/hal-00108209

K. S. Ralston, A. G. Lerner, D. R. Diener, and K. L. Hill, Flagellar Motility Contributes to Cytokinesis in Trypanosoma brucei and Is Modulated by an Evolutionarily Conserved Dynein Regulatory System, Eukaryotic Cell, vol.5, issue.4, pp.696-711, 2006.
DOI : 10.1128/EC.5.4.696-711.2006

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, The EMBO Journal, vol.22, issue.20, pp.5336-5346, 2003.
DOI : 10.1093/emboj/cdg518

URL : https://hal.archives-ouvertes.fr/hal-00108210

K. Vickerman, DEVELOPMENTAL CYCLES AND BIOLOGY OF PATHOGENIC TRYPANOSOMES, British Medical Bulletin, vol.41, issue.2, pp.105-114, 1985.
DOI : 10.1093/oxfordjournals.bmb.a072036

B. Rotureau, M. A. Morales, P. Bastin, and G. F. Spath, The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development?, Cellular Microbiology, vol.48, issue.5, pp.710-718, 2009.
DOI : 10.1111/j.1462-5822.2009.01295.x

B. Rotureau, C. P. Ooi, D. Huet, S. Perrot, and P. Bastin, Forward motility is essential for trypanosome infection in the tsetse fly, Cellular Microbiology, vol.41, issue.Part 21, 2013.
DOI : 10.1111/cmi.12230

URL : https://hal.archives-ouvertes.fr/pasteur-01301209

N. K. Kisalu, G. Langousis, L. A. Bentolila, K. S. Ralston, and K. L. Hill, Mouse infection and pathogenesis by Trypanosoma brucei motility mutants, Cell Microbiol, 2013.

D. Robinson, P. Beattie, T. Sherwin, and K. Gull, [25] Microtubules, tubulin, and microtubule-associated proteins of trypanosomes, Method Enzymology, vol.196, pp.285-299, 1991.
DOI : 10.1016/0076-6879(91)96027-O

M. Bonhivers, S. Nowacki, N. Landrein, R. , and D. R. , Biogenesis of the Trypanosome Endo-Exocytotic Organelle Is Cytoskeleton Mediated, PLoS Biology, vol.111, issue.5, p.105, 2008.
DOI : 10.1371/journal.pbio.0060105.sg005

URL : https://hal.archives-ouvertes.fr/hal-00318588

S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Dore et al., Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes, Molecular Biology of the Cell, vol.19, issue.3, pp.929-944, 2008.
DOI : 10.1091/mbc.E07-08-0749

URL : https://hal.archives-ouvertes.fr/pasteur-00217549

R. Cooper, A. R. De-jesus, and G. A. Cross, Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion, The Journal of Cell Biology, vol.122, issue.1, pp.149-156, 1993.
DOI : 10.1083/jcb.122.1.149

D. J. Lacount, B. Barrett, and J. E. Donelson, Trypanosoma brucei FLA1 Is Required for Flagellum Attachment and Cytokinesis, Journal of Biological Chemistry, vol.277, issue.20, pp.17580-17588, 2002.
DOI : 10.1074/jbc.M200873200

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.99, issue.1, pp.89-101, 1999.
DOI : 10.1016/S0166-6851(99)00002-X

H. Tjalsma, L. Lambooy, P. W. Hermans, and D. W. Swinkels, Shedding & shaving: Disclosure of proteomic expressions on a bacterial face, PROTEOMICS, vol.277, issue.7, pp.1415-1428, 2008.
DOI : 10.1002/pmic.200700550

J. Blonder, K. C. Chan, H. J. Issaq, and T. D. Veenstra, Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS, Nature Protocols, vol.4, issue.6, pp.2784-2790, 2006.
DOI : 10.1038/nprot.2006.359

J. Blonder, T. P. Conrads, L. R. Yu, A. Terunuma, G. M. Janini et al., A detergent- and cyanogen bromide-free method for integral membrane proteomics: Application toHalobacterium purple membranes and the human epidermal membrane proteome, PROTEOMICS, vol.4, issue.1, pp.31-45, 2004.
DOI : 10.1002/pmic.200300543

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

S. Absalon, L. Kohl, C. Branche, T. Blisnick, G. Toutirais et al., Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei, PLoS ONE, vol.129, issue.24, p.437, 2007.
DOI : 10.1371/journal.pone.0000437.s006

URL : https://hal.archives-ouvertes.fr/pasteur-00169134

S. Kelly, J. Reed, S. Kramer, L. Ellis, H. Webb et al., Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci, Molecular and Biochemical Parasitology, vol.154, issue.1, pp.103-109, 2007.
DOI : 10.1016/j.molbiopara.2007.03.012

Z. Wang, J. C. Morris, M. E. Drew, E. , and P. T. , Inhibition of Trypanosoma brucei Gene Expression by RNA Interference Using an Integratable Vector with Opposing T7 Promoters, Journal of Biological Chemistry, vol.275, issue.51, pp.40174-40179, 2000.
DOI : 10.1074/jbc.M008405200

S. Redmond, J. Vadivelu, and M. C. Field, RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.128, issue.1, pp.115-118, 2003.
DOI : 10.1016/S0166-6851(03)00045-8

G. Burkard, C. M. Fragoso, R. , and I. , Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.153, issue.2, pp.220-223, 2007.
DOI : 10.1016/j.molbiopara.2007.02.008

S. Absalon, T. Blisnick, M. Bonhivers, L. Kohl, N. Cayet et al., Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei, Journal of Cell Science, vol.121, issue.22, pp.3704-3716, 2008.
DOI : 10.1242/jcs.035626

URL : https://hal.archives-ouvertes.fr/hal-00426339

D. Dacheux, N. Landrein, M. Thonnus, G. Gilbert, A. Sahin et al., A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility, PLoS ONE, vol.123, issue.Pt 3, p.31344, 2012.
DOI : 10.1371/journal.pone.0031344.s008

URL : https://hal.archives-ouvertes.fr/hal-01101397

L. C. Pradel, M. Bonhivers, N. Landrein, R. , and D. R. , NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, Journal of Cell Science, vol.119, issue.9, pp.1852-1863, 2006.
DOI : 10.1242/jcs.02900

URL : https://hal.archives-ouvertes.fr/hal-00215921

K. N. Dubois, S. Alsford, J. M. Holden, J. Buisson, M. Swiderski et al., NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions, PLoS Biology, vol.23, issue.3, p.1001287, 2012.
DOI : 10.1371/journal.pbio.1001287.s014

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-109, 1999.
DOI : 10.1083/jcb.104.3.439

C. Adhiambo, T. Blisnick, G. Toutirais, E. Delannoy, and P. Bastin, A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum, Journal of Cell Science, vol.122, issue.6, pp.834-841, 2009.
DOI : 10.1242/jcs.040444

D. R. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, issue.6337, pp.731-733, 1991.
DOI : 10.1038/352731a0

B. T. Emmer, M. D. Daniels, J. M. Taylor, C. L. Epting, and D. M. Engman, Calflagin Inhibition Prolongs Host Survival and Suppresses Parasitemia in Trypanosoma brucei Infection, Eukaryotic Cell, vol.9, issue.6, pp.934-942, 2010.
DOI : 10.1128/EC.00086-10

K. S. Ralston, Z. P. Kabututu, J. H. Melehani, M. Oberholzer, and K. L. Hill, Flagellum: Moving Parasites in New Directions, Annual Review of Microbiology, vol.63, issue.1, pp.335-362, 2009.
DOI : 10.1146/annurev.micro.091208.073353

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. C. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, Journal of Cell Science, vol.126, issue.1, pp.327-338, 2013.
DOI : 10.1242/jcs.117069

K. Fenn and K. R. Matthews, The cell biology of Trypanosoma brucei differentiation, Current Opinion in Microbiology, vol.10, issue.6, pp.539-546, 2007.
DOI : 10.1016/j.mib.2007.09.014

Q. Zhou, L. Gheiratmand, Y. Chen, T. K. Lim, J. Zhang et al., A Comparative Proteomic Analysis Reveals a New Bi-Lobe Protein Required for Bi-Lobe Duplication and Cell Division in Trypanosoma brucei, PLoS ONE, vol.5, issue.3, p.9660, 2010.
DOI : 10.1371/journal.pone.0009660.s010

M. Inoue, Y. Nakamura, K. Yasuda, N. Yasaka, T. Hara et al., The 14-3-3 Proteins of Trypanosoma brucei Function in Motility, Cytokinesis, and Cell Cycle, Journal of Biological Chemistry, vol.280, issue.14, pp.14085-14096, 2005.
DOI : 10.1074/jbc.M412336200

F. Voncken, F. Gao, C. Wadforth, M. Harley, C. et al., The Phosphoarginine Energy-Buffering System of Trypanosoma brucei Involves Multiple Arginine Kinase Isoforms with Different Subcellular Locations, PLoS ONE, vol.17, issue.6, pp.1201-1207, 2009.
DOI : 10.1371/journal.pone.0065908.s003

C. A. Pereira, G. D. Alonso, H. N. Torres, and M. M. Flawia, Arginine Kinase: A Common Feature for Management of Energy Reserves in African and American Flagellated Trypanosomatids, The Journal of Eukaryotic Microbiology, vol.6, issue.1, pp.82-85, 2002.
DOI : 10.1073/pnas.95.15.8449

K. S. Ralston, N. K. Kisalu, and K. L. Hill, Structure-Function Analysis of Dynein Light Chain 1 Identifies Viable Motility Mutants in Bloodstream-Form Trypanosoma brucei, Eukaryotic Cell, vol.10, issue.7, pp.884-894, 2011.
DOI : 10.1128/EC.00298-10

P. Bastin, T. H. Macrae, S. B. Francis, K. R. Matthews, and K. Gull, Flagellar Morphogenesis: Protein Targeting and Assembly in the Paraflagellar Rod of Trypanosomes, Molecular and Cellular Biology, vol.19, issue.12, pp.8191-8200, 1999.
DOI : 10.1128/MCB.19.12.8191

A. Bancaud, S. Huet, G. Rabut, and J. Ellenberg, Fluorescence Perturbation Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, Photoactivation, Photoconversion, and FLIP, Live cell imaging: a laboratory manual, pp.67-93, 2010.
DOI : 10.1101/pdb.top90

URL : https://hal.archives-ouvertes.fr/inserm-00543843

P. Bastin, K. Ellis, L. Kohl, and K. Gull, Flagellum ontogeny studied via an inherited and regulated RNA interference system, J. Cell Sci, vol.113, pp.3321-3328, 2000.

H. Farr and K. Gull, Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes, Cell Motility and the Cytoskeleton, vol.95, issue.Part 1, pp.24-35, 2009.
DOI : 10.1002/cm.20322

H. J. Esson, B. Morriswood, S. Yavuz, K. Vidilaseris, G. Dong et al., Morphology of the Trypanosome Bilobe, a Novel Cytoskeletal Structure, Eukaryotic Cell, vol.11, issue.6, pp.761-772, 2012.
DOI : 10.1128/EC.05287-11

R. A. Lewin, L. , and K. W. , Autotomy of algal flagella: electron microscope studies of Chlamydomonas (Chlorophyceae) and Tetraselmis (Prasinophyceae), Phycologia, vol.24, issue.3, pp.311-316, 1985.
DOI : 10.2216/i0031-8884-24-3-311.1

O. Arnaiz, A. Malinowska, C. Klotz, L. Sperling, M. Dadlez et al., Cildb: a knowledgebase for centrosomes and cilia. Databas: the journal of biological databases and curation, p.22, 2009.

I. Roditi, H. Schwarz, T. W. Pearson, R. P. Beecroft, M. K. Liu et al., Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei, The Journal of Cell Biology, vol.108, issue.2, pp.737-746, 1989.
DOI : 10.1083/jcb.108.2.737

R. Demonchy, T. Blisnick, C. Deprez, G. Toutirais, C. Loussert et al., Kinesin 9 family members perform separate functions in the trypanosome flagellum, The Journal of Cell Biology, vol.93, issue.5, pp.615-622, 2009.
DOI : 10.1073/pnas.0406817101

B. Rotureau, T. Blisnick, I. Subota, D. Julkowska, N. Cayet et al., Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body, Journal of Cell Science, vol.127, issue.1, pp.204-215, 2014.
DOI : 10.1242/jcs.136424

URL : https://hal.archives-ouvertes.fr/pasteur-01301211

S. Y. Sun, C. Wang, Y. A. Yuan, and C. Y. He, An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei, Journal of Cell Science, vol.126, issue.2, 2013.
DOI : 10.1242/jcs.113621

T. Sherwin, A. Schneider, R. Sasse, T. Seebeck, and K. Gull, Distinct localization and cell cycle dependence of COOH terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei, The Journal of Cell Biology, vol.104, issue.3, pp.439-446, 1987.
DOI : 10.1083/jcb.104.3.439

M. Fliegauf, H. Olbrich, J. Horvath, J. H. Wildhaber, M. A. Zariwala et al., Mislocalization of DNAH5 and DNAH9 in Respiratory Cells from Patients with Primary Ciliary Dyskinesia, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.12, pp.1343-1349, 2005.
DOI : 10.1164/rccm.200411-1583OC

T. Yagi, K. Uematsu, Z. Liu, and R. Kamiya, Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella, Journal of Cell Science, vol.122, issue.9, pp.1306-1314, 2009.
DOI : 10.1242/jcs.045096

K. H. Bui, T. Yagi, R. Yamamoto, R. Kamiya, and T. Ishikawa, axoneme, The Journal of Cell Biology, vol.103, issue.5, pp.913-925, 2012.
DOI : 10.1083/jcb.201002081

K. A. Johnson and J. L. Rosenbaum, Polarity of flagellar assembly in Chlamydomonas, The Journal of Cell Biology, vol.119, issue.6, pp.1605-1611, 1992.
DOI : 10.1083/jcb.119.6.1605

S. K. Archer, D. Inchaustegui, R. Queiroz, C. , and C. , The Cell Cycle Regulated Transcriptome of Trypanosoma brucei, PLoS ONE, vol.23, issue.Pt 7, p.18425, 2011.
DOI : 10.1371/journal.pone.0018425.s007

B. Morga and P. Bastin, Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences, Cilia, vol.2, issue.1, p.16, 2013.
DOI : 10.1111/j.1462-5822.2010.01566.x

URL : https://hal.archives-ouvertes.fr/pasteur-00911797

W. Liu, K. Apagyi, L. Mcleavy, and K. Ersfeld, Expression and cellular localisation of calpain-like proteins in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.169, issue.1, pp.20-26, 2010.
DOI : 10.1016/j.molbiopara.2009.09.004

K. Y. Chan and K. Ersfeld, The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.174, issue.2, pp.137-140, 2010.
DOI : 10.1016/j.molbiopara.2010.08.001

R. Woodward, M. J. Carden, and K. Gull, Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei, Parasitology, vol.93, issue.01, pp.77-85, 1995.
DOI : 10.1098/rstb.1989.0037

L. B. Pedersen, S. Geimer, R. D. Sloboda, and J. L. Rosenbaum, The Microtubule Plus End-Tracking Protein EB1 Is Localized to the Flagellar Tip and Basal Bodies in Chlamydomonas reinhardtii, Current Biology, vol.13, issue.22, pp.1969-1974, 2003.
DOI : 10.1016/j.cub.2003.10.058

M. A. Bloch, J. , and K. A. , Identification of a molecular chaperone in the eukaryotic flagellum and its localization to the site of microtubule assembly, J. Cell Sci, vol.108, pp.3541-3545, 1995.

D. Woolley, C. Gadelha, and K. Gull, Evidence for a sliding-resistance at the tip of the trypanosome flagellum, Cell Motility and the Cytoskeleton, vol.83, issue.12, pp.741-746, 2006.
DOI : 10.1002/cm.20159

C. J. Haycraft, B. Banizs, Y. Aydin-son, Q. Zhang, E. J. Michaud et al., Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function, PLoS Genetics, vol.12, issue.4, p.53, 2005.
DOI : 1059-1524(2001)012[0589:PAPIIL]2.0.CO;2

B. Rotureau, I. Subota, J. Buisson, and P. Bastin, A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly, Development, vol.139, issue.10, pp.1842-1850, 2012.
DOI : 10.1242/dev.072611

URL : https://hal.archives-ouvertes.fr/pasteur-01371317