The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

Thierry Blisnick, Johanna Buisson, Sabrina Absalon, Alexandra Marie, Nadège Cayet, Philippe Bastin

To cite this version:

HAL Id: pasteur-01301215
https://hal-pasteur.archives-ouvertes.fr/pasteur-01301215
Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

Thierry Blisnicka, Johanna Buissona, Sabrina Absalonb, Alexandra Mariea, Nadège Cayetb, and Philippe Bastina

*Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France; bImagopole Platform, Institut Pasteur, 75015 Paris, France

ABSTRACT Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist *Trypanosoma brucei*, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the *IFT140RNAi* mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

INTRODUCTION

Intraflagellar transport (IFT) is the movement of two protein complexes termed IFT-A and IFT-B from the base of cilia and flagella to their tip (anterograde) and back (retrograde transport; Kozminski et al., 1993; Rosenbaum and Witman, 2002). IFT takes place along microtubules and is driven by motors belonging to the kinesin and dynein family. IFT likely transports flagellar precursors for their incorporation at the distal tip of the elongating flagellum (Wren et al., 2013) and accordingly is required for construction in most species examined to date. Much attention has been devoted to the IFT-B complex (Bhogaraju et al., 2013b) and to the kinesin motors (Sholey, 2013), whereas data on IFT-A and dynein motors are comparatively scarce. However, the recent discovery that several ciliopathies (genetic diseases due to malfunctioning of cilia and flagella) are caused by mutations in genes encoding IFT-A or dynein components has led to interest in further investigation (Dagoneau et al., 2009; Gilissen et al., 2010; Walczak-Sztulpa et al., 2010; Arts et al., 2011; Bredrup et al., 2011; Davis et al., 2011; Perrault et al., 2012; Huber et al., 2013; Schmidts et al., 2013). Inhibition of retrograde IFT results in the formation of shorter cilia and flagella, which accumulate IFT material mostly belonging to the IFT-B complex (Pazour et al., 1999; Porter et al., 1999; Blacque et al., 2006; Absalon et al., 2008b). Biochemical studies in *Chlamydomonas* revealed that the IFT dynein responsible for retrograde IFT is made of a homodimer of a specific dynein heavy chain (DHC2, also known as DHC1b) associated with a dynein light intermediate chain (IC) (DLI1, also known as...
D1bLJC or XBX-1), a dynein IC (DIC5, also known as FAP133/WDR34), and a light chain (LC8; Rompolas et al., 2007). More recently, an additional IC termed FAP163/WD60 was identified and associates with DIC5 (Patel-King et al., 2013). Most of these proteins turned out to be required for proper retrograde transport (Pazour et al., 1998, 1999; Porter et al., 1999; Schaefer et al., 2003; Patel-King et al., 2013), although the individual contribution of each remains to be clarified.

The protist Trypanosoma brucei is emerging as a potent model to study the flagellum (Baron et al., 2007), especially its formation, bringing complementary information to the well-established Chlamydomonas model (Morga and Bastin, 2013). The cell possesses a long flagellum (~22 μm in the culture-adapted procyclic stage), and IFT can be monitored and quantified using fusion proteins (Absalon et al., 2008b). Curiously, two clearly distinct genes for the IFT dynein heavy chain are predicted in the genome, a feature conserved in all members of the Trypanosomatid family (Adhiambo et al., 2005). These are termed DHC2.1 and DHC2.2. In the related protist Leishmania mexicana (in which flagella do not appear to be essential, at least in culture), only DHC2.2 could be deleted by gene knockout, which resulted in the formation of tiny flagella. In contrast, DHC2.1-knockout cells could not be obtained, leading to the suggestions that the gene was essential and that the two heavy chains perform separate functions (Adhiambo et al., 2005). In T. brucei, DHC2.1 exhibited both anterograde and retrograde IFT upon endogenous tagging with green fluorescent protein (GFP), suggesting that it participates in IFT (Buisson et al., 2013). Knockdown of the other dynein heavy chain, DHC2.2, by RNA interference (RNAi) inhibited flagellum formation (Kohl et al., 2003), and preliminary electron microscopy analysis indicated the presence of short flagella containing electron-dense material, which could well be typical of retrograde transport defects (Absalon et al., 2008b).

In this study, the role of four distinct components of the trypanosome IFT dynein is investigated in detail. Surprisingly, the two heavy chains, DHC2.1 and DHC2.2, are not redundant and both turn out to be essential for retrograde transport. Immunoprecipitation data indicate that they form a heterodimer, a unique aspect for IFT dyneins. An essential contribution to retrograde IFT is shown for DLI1 as in green algae and nematodes, and for the first time for DIC5. Further analysis reveals that DLI1 is required for the stability of the dynein heavy chains and that DIC5 contributes to localization of the dynein components from the cytoplasm to the base of the flagellum. Finally, the relationship with the IFT-A complex, the other key player in retrograde transport, is examined, revealing a critical role for the entry of the dynein complex in the flagellar compartment but not for its assembly. These data lead to a new molecular model explaining the formation and functioning of the IFT dynein complex.

RESULTS

The IFT dynein is composed of different subunits

Genome analysis revealed the presence of two clearly distinct genes coding for the IFT dynein heavy chain, which were termed DHC2.1 (Tb927.4.560) and DHC2.2 (Tb927.11.2430; Briggs et al., 2004; Adhiambo et al., 2005; Berriman et al., 2005; Kohl and Bastin, 2005; Figure 1A). This duplication appears specific to kinetoplastids, as both genes are found in the genomes of African trypanosomes (T. brucei, T. brucei gambiense, T. congolense, and T. vivax), of the more distant South American trypanosomes T. cruzi, and of all Leishmania subspecies (L. mexicana, L. major, L. braziliensis, and L. infantum). When compared with the corresponding IFT dynein heavy chain from humans, Caenorhabditis rehirdorit, or Caenorhabditis elegans, DHC2.1 and DHC2.2 share 33–39% identity and 54–59% similarity. Much greater conservation is found in the typical dynein signatures (Supplemental Figure S1). DHC2.1 and DHC2.2 possess the three-amino acid insertion A-G-K found between the first two P-loops that is typical of IFT dynein heavy chains (Pazour et al., 1999). This signature is conserved in predicted DHC2 proteins from 30 different species ranging from protists to mammals (unpublished data). Alignment of the T. brucei DHC2.1 and DHC2.2 reveals that they share only 39% identity, a feature conserved among the other trypanosomatids. Nevertheless, all typical domains of dynein heavy chains are present, such as AAA (ATPase associated), the microtubule-binding domain, and the C-terminal signature (Figure 1A). The main difference between these two heavy chains is the absence of the dynein N-terminal region 1 from the DHC2.2 from all five species examined (Figure 1A). This region has been proposed to mediate interaction with light and intermediate chains (Sakato and King, 2004). Therefore trypanosomatids harbor two clearly distinct genes potentially encoding IFT dynein heavy chains. A dynein light IC (DLI1) and a dynein IC (DIC5) were also identified (Figure 1B) and will be discussed.

DHC2.1 and DHC2.2 are essential for retrograde transport

DHC2.1 and DHC2.2 are found in the intact flagellum proteome of procyclic T. brucei, suggesting that they could be flagellar proteins (Subota et al., 2014). To evaluate their exact localization, we produced polyclonal antibodies against the highly divergent N-terminal regions using amino acids (aa) 326–488 of DHC2.1 and 308–509 of DHC2.2 (Figure 1A). By immunofluorescence assay (IFA) on
the expression of both EGFP::DHC2.1 and EGFP::DHC2.2 displaying the expected motility on gel (Figure 3A). Analysis of live cells demonstrated that both EGFP::DHC2.1 (Buisson et al., 2013) and EGFP::DHC2.2 (Figure 3B) were concentrated at the flagellar base and moving rapidly in both anterograde and retrograde directions in the flagellum (Supplemental Video S1). Kymograph analysis revealed robust anterograde and retrograde IFT (Figure 3C). Anterograde trains looked longer, traveled more slowly, and were less frequent than retrograde trains, in agreement with what was reported previously for two IFT-B components (GFP::IFT52 and YFP::IFT81) or for the dynein heavy chain GFP::DHC2.1 (Bhogaraju et al., 2013a; Buisson et al., 2013). These data demonstrate that both DHC2.1 and DHC2.2 are well related to IFT.

To determine the contributions of these two very distinct dynein heavy chains to IFT, we knocked down their expression by RNAi upon transfection of a vector allowing inducible expression of double-stranded RNA of DHC2.1 or DHC2.2 (Figure 4). In both cases, Western blot confirmed potent silencing (Figure 4A), and IFA revealed a severe drop in the amount of detected protein, including at the base of flagellum (Supplemental Figure S2 for DHC2.1 and Supplemental Figure S3 for DHC2.2). Observation of live trypanosomes of induced DHC2.1RNAi and of the DHC2.2RNAi strains showed that cells assembled shorter flagella, whereas flagella assembled before RNAi remained in place, as reported for other IFTRNAi mutants (Kohl et al., 2003). To understand the nature of the defect in flagellum assembly, we induced the DHC2.1RNAi and DHC2.2RNAi strains for 3 d and analyzed them by IFA and electron microscopy. First, IFA using the anti-IFT172 marker antibody revealed that formation of shorter flagella was accompanied by a spectacular accumulation of IFT protein in both cases (Figure 4B). Second, scanning electron microscopy showed the presence of methanol-fixed trypanosomes, both antibodies produced staining all along the length of the flagellum and regularly lit up the base of the flagellum (Figure 2, A and B). The later signal was found above the Mab22 signal, a marker of the basal body (Bonhivers et al., 2008). Some signal was also detected in the cytoplasm. This staining pattern is similar to what was observed for several trypanosome IFT-B proteins (Absalon et al., 2008b; Adhiambo et al., 2009; Franklin and Ullu, 2010; Bhogaraju et al., 2013a; Huet et al., 2014).

To confirm protein distribution and to evaluate their ability to participate to IFT, we expressed N-terminal enhanced GFP (EGFP) fusion proteins upon endogenous tagging. Western blot validated the expression of both EGFP::DHC2.1 and EGFP::DHC2.2 displaying the expected motility on gel (Figure 3A). Analysis of live cells demonstrated that both EGFP::DHC2.1 (Buisson et al., 2013) and EGFP::DHC2.2 (Figure 3B) were concentrated at the flagellar base and moving rapidly in both anterograde and retrograde directions in the flagellum (Supplemental Video S1). Kymograph analysis revealed robust anterograde and retrograde IFT (Figure 3C). Anterograde trains looked longer, traveled more slowly, and were less frequent than retrograde trains, in agreement with what was reported previously for two IFT-B components (GFP::IFT52 and YFP::IFT81) or for the dynein heavy chain GFP::DHC2.1 (Bhogaraju et al., 2013a; Buisson et al., 2013). These data demonstrate that both DHC2.1 and DHC2.2 are well related to IFT.

To determine the contributions of these two very distinct dynein heavy chains to IFT, we knocked down their expression by RNAi upon transfection of a vector allowing inducible expression of double-stranded RNA of DHC2.1 or DHC2.2 (Figure 4). In both cases, Western blot confirmed potent silencing (Figure 4A), and IFA revealed a severe drop in the amount of detected protein, including at the base of flagellum (Supplemental Figure S2 for DHC2.1 and Supplemental Figure S3 for DHC2.2). Observation of live trypanosomes of induced DHC2.1RNAi and of the DHC2.2RNAi strains showed that cells assembled shorter flagella, whereas flagella assembled before RNAi remained in place, as reported for other IFTRNAi mutants (Kohl et al., 2003). To understand the nature of the defect in flagellum assembly, we induced the DHC2.1RNAi and DHC2.2RNAi strains for 3 d and analyzed them by IFA and electron microscopy. First, IFA using the anti-IFT172 marker antibody revealed that formation of shorter flagella was accompanied by a spectacular accumulation of IFT protein in both cases (Figure 4B). Second, scanning electron microscopy showed the presence of methanol-fixed trypanosomes, both antibodies produced staining all along the length of the flagellum and regularly lit up the base of the flagellum (Figure 2, A and B). The later signal was found above the Mab22 signal, a marker of the basal body (Bonhivers et al., 2008). Some signal was also detected in the cytoplasm. This staining pattern is similar to what was observed for several trypanosome IFT-B proteins (Absalon et al., 2008b; Adhiambo et al., 2009; Franklin and Ullu, 2010; Bhogaraju et al., 2013a; Huet et al., 2014).
DHC2.1 and DHC2.2 form a heterodimer

Cytoplasmic or IFT dyneins were only known to function as homodimers of heavy chains associated with various light and intermediate chains (Vale, 2003; Rompolas et al., 2007), raising a question about the unexpected nonredundant roles of DHC2.1 and DHC2.2 in trypanosomes. Two possibilities can be considered: the existence of two separate homodimers or the presence of a single heterodimer. Western blot was used to evaluate the consequence of the loss of one heavy chain for the abundance of the other one. Surprisingly, knockdown of DHC2.2 resulted in severe reduction in the amount of DHC2.1 protein (Figure 5A). This suggests that DHC2.1 relies on DHC2.2 for stability, and therefore we considered the possibility that they could associate to form a heterodimer. To this end, we carried out several immunoprecipitation assays with a combination of antibodies and cell lines. First, lysates of the GFP::DHC2.1 cell line were incubated with an anti-GFP to immunoprecipitate the fusion protein. Precipitates were probed by immunoblot with the anti-DHC2.2 antibody, revealing the presence of EGFP::DHC2.1 (Figure 5B, lane 1). When the same experiment was performed with wild-type samples, no signal was detected (Figure 5B, lane 2). This result implies an association of DHC2.1 with EGFP::DHC2.2 and supports the existence of a heterodimer of heavy chains. Next, the anti-DHC2.1 was used to immunoprecipitate the protein from wild-type cell lysates, and the pellet was probed with the anti-DHC2.2, also revealing a positive interaction (Figure 5B, lane 3). In another series of experiment, lysates of the EGFP::DHC2.1 cell line were incubated with the anti-DHC2.2, and immunoblotting with an anti-DHC2.2 antibody detected a positive signal (Figure 5B, lane 4). In contrast, a negative control using the anti-GFP in the precipitation step did not produce a positive signal when probing with the anti-DHC2.1 antibody. These results support the existence of a heterodimer of DHC2.1 and DHC2.2 and explain the nonredundancy of both dynein heavy chains in retrograde transport.

DHC2.1 and DHC2.2 are not redundant and are both essential for retrograde IFT.

Of short and dilated flagella barely emerging from the flagellar pocket (Figure 4C). Analysis of successive induction times revealed that the length of the flagellum was becoming shorter and shorter for both cell lines (Supplemental Figure S4). Third, transmission electron microscopy revealed that the dilation corresponded to an accumulation of electron-dense material (Figure 4D). The presence of a short and ill-organized axoneme was also observed with microtubules ending prematurely. These results are typical of inhibition of retrograde transport, leading to the conclusion that both DHC2.1 and DHC2.2 are essential for retrograde transport.
Two nonmotor IFT dynein subunits are also essential for retrograde transport

The dynein heavy chains function within a protein complex associated with various intermediate and light chains. Here we followed the recently unified nomenclature for naming them (Hom et al., 2011). Although trypanosomes possess two genes encoding IFT dynein heavy chains, only a single gene could be found for the dynein IC 5 (DIC5), also known as FAP133 (Rompolas et al., 2004; Figure 1B). DIC5 exhibits 5 WD40 repeats according to Pfam analysis and shares 31% identity and 48% similarity with orthologues in human or in Chlamydomonas. The T. brucei DIC5 sequence (Tb927.3.5540) has distant but significant similarity with four other dynein intermediate chains that also contain WD40 repeats: IC78 or DNA11, IC70 or DNA12—both components of the axonemal outer dynein arm—and IC138 and IC140, which are associated with some axonemal inner dynein arms. In the case of DLI1, the T. brucei protein (encoded by Tb927.11.16810) shares 26–27% identity and 43–47% similarity with the corresponding protein from humans, worms, or algae. The Miro-1 domain found at the N-terminal part is conserved in all trypanosomatids (Figure 1B). Miro stands for mitochondrial Rho proteins, atypical Rho GTPases that have a unique domain organization, with tandem GTP-binding domains and two EF hand domains that may bind calcium. No other related proteins could be found in any of the trypanosome genomes.

To evaluate the role and the possible contribution of these two proteins to retrograde transport in T. brucei, they were first fused to GFP upon endogenous tagging. Western blot using the anti-GFP antibody confirmed the presence of the fusion proteins displaying the expected motility corresponding to 73 kDa for EGFP::DLI1 and 86 kDa for EGFP::DIC5 (Figure 6A). IFA with the anti-GFP and observation of live cells revealed a similar location as previously shown for the dynein heavy chains: concentration at the flagellar base, distribution all along the flagellum, and a diffuse cytoplasmic presence (Figure 6B). Analysis of live cells demonstrated robust anterograde IFT for both fusion proteins (Supplemental Videos S2 and S3 and still images in Figure 6C). However, the fluorescence signal was somehow weaker compared with GFP fused to dynein heavy chains, and the smaller retrograde trains were more discrete, especially because of their masking by the longer anterograde trains. To confirm the existence of retrograde transport, we extracted anterograde and retrograde trafficking independently from kymographs (Chenouard et al., 2010). Such an analysis revealed the frequent presence of fast retrograde trains in addition to the slower and larger anterograde trains (Supplemental Figure S5).

RNAi targeting of DLI1 or of DIC5 produced a typical phenotype related to inhibition of retrograde transport: cells assembled short, dilated flagella, as visualized by scanning electron microscopy (Figure 7A), and these were filled with IFT material, as shown by IFA with the anti-IFT172 antibody (Figure 7B). To quantify the penetrance of the phenotype, we analyzed induced DLI1RNAi and DIC5RNAi cells by IFA using the anti-IFT172 and the anti-axonemal marker Mab25 and compared them with the typical retrograde mutants DHC2.1RNAi and IFT140RNAi (Supplemental Figure S6). The following typical cell types were scored: 1) with a normal-looking flagellum; 2) with a flagellum that is too short (<10 μm), typical of early stages of knockdown (Kohl et al., 2003); 3) with a normal-looking old flagellum and an abnormally short new flagellum filled with IFT material (typical of the emergence of the retrograde phenotype); 4) with a short flagellum (<5 μm) filled with IFT material (the archetype of the retrograde phenotype); and 5) with a short flagellum (<5 μm) but without excessive IFT amount (seen at later time points). The kinetics of emergence of the different populations was quite similar in all cases and comparable to that of previously reported retrograde transport mutants (Absalon et al., 2008a). This demonstrates that although they are deprived of ATPase activity, these two dynein subunits are essential for retrograde IFT.

DLI1 and DIC5 perform separate functions

To find out the exact role of these dynein subunits, the behavior of the dynein heavy chain was examined closely in each mutant. First, Western blot using the anti-DHC2.1 antibody revealed a severe reduction in the amount of this heavy chain in the noninduced cells grown in the absence or in presence of tetracycline for the indicated periods and probed with the anti-DHC2.1 antiserum. Precipitates were run on SDS–PAGE, transferred to membranes, and probed with the antibodies indicated at the bottom.

To evaluate the role of the endogenous DHC2.1 and DHC2.2 proteins, we performed immunoprecipitation assays revealing interactions between DHC2.1 and DHC2.2. Lysates from the indicated total protein samples of T. brucei were immunoprecipitated with the anti-DHC2.1 antibody. (B) Immunoprecipitation assays revealing interactions between DHC2.1 and DHC2.2. Lysates from the indicated cell lines were incubated with the antibody shown on the top and with protein A beads. Precipitates were run on SDS–PAGE, transferred to membranes, and probed with the antibodies indicated at the bottom.

To evaluate the role and the possible contribution of these two proteins to retrograde transport in T. brucei, they were first fused to GFP upon endogenous tagging. Western blot using the anti-GFP antibody confirmed the presence of the fusion proteins displaying the expected motility corresponding to 73 kDa for EGFP::DLI1 and 86 kDa for EGFP::DIC5 (Figure 6A). IFA with the anti-GFP and observation of live cells revealed a similar location as previously shown for the dynein heavy chains: concentration at the flagellar base, distribution all along the flagellum, and a diffuse cytoplasmic presence (Figure 6B). Analysis of live cells demonstrated robust anterograde IFT for both fusion proteins (Supplemental Videos S2 and S3 and still images in Figure 6C). However, the fluorescence signal was somehow weaker compared with GFP fused to dynein heavy chains, and the smaller retrograde trains were more discrete, especially because of their masking by the longer anterograde trains. To confirm the existence of retrograde transport, we extracted anterograde and retrograde trafficking independently from kymographs (Chenouard et al., 2010). Such an analysis revealed the frequent presence of fast retrograde trains in addition to the slower and larger anterograde trains (Supplemental Figure S5).

RNAi targeting of DLI1 or of DIC5 produced a typical phenotype related to inhibition of retrograde transport: cells assembled short, dilated flagella, as visualized by scanning electron microscopy (Figure 7A), and these were filled with IFT material, as shown by IFA with the anti-IFT172 antibody (Figure 7B). To quantify the penetrance of the phenotype, we analyzed induced DLI1RNAi and DIC5RNAi cells by IFA using the anti-IFT172 and the anti-axonemal marker Mab25 and compared them with the typical retrograde mutants DHC2.1RNAi and IFT140RNAi (Supplemental Figure S6). The following typical cell types were scored: 1) with a normal-looking flagellum; 2) with a flagellum that is too short (<10 μm), typical of early stages of knockdown (Kohl et al., 2003); 3) with a normal-looking old flagellum and an abnormally short new flagellum filled with IFT material (typical of the emergence of the retrograde phenotype); 4) with a short flagellum (<5 μm) filled with IFT material (the archetype of the retrograde phenotype); and 5) with a short flagellum (<5 μm) but without excessive IFT amount (seen at later time points). The kinetics of emergence of the different populations was quite similar in all cases and comparable to that of previously reported retrograde transport mutants (Absalon et al., 2008a). This demonstrates that although they are deprived of ATPase activity, these two dynein subunits are essential for retrograde IFT.

DLI1 and DIC5 perform separate functions

To find out the exact role of these dynein subunits, the behavior of the dynein heavy chain was examined closely in each mutant. First, Western blot using the anti-DHC2.1 antibody revealed a severe reduction in the amount of this heavy chain in the noninduced cells grown in the absence or in presence of tetracycline for the indicated periods and probed with the anti-DHC2.1 antiserum. Precipitates were run on SDS–PAGE, transferred to membranes, and probed with the antibodies indicated at the bottom.
but its distribution became cytoplasmic without precise location to the flagellar base or to the flagellum (Figure 9C). In both cases, the dynein subunits were not found in the short flagella, whose presence was confirmed by the Mab25 axoneme marker (Figures 8C and 9C). We conclude that DLI1 plays a central role in the stability or formation of the IFT dynein complex. DIC5 is not necessary for the stability of the dynein heavy chains, but instead is involved in their targeting to the base of the flagellum, since a dispersion of heavy.

To determine whether these conclusions could apply to other components of the IFT dynein complex, we transfected each RNAi mutant with the construction expressing either GFP::DLI1 or GFP::DIC5 (Table 1), in order to monitor the fate of the other light or IC. In the DLI1RNAi cell line, a significant reduction in the amount of detectible DIC5 protein was observed, but its localization at the flagellar base seemed conserved (Figure 8C). In the other situation, the amount of DLI1 was not visibly affected in the DIC5RNAi cell line, but its distribution became cytoplasmic without precise location to the flagellar base or to the flagellum (Figure 9C). In both cases, the dynein subunits were not found in the short flagella, whose presence was confirmed by the Mab25 axoneme marker (Figures 8C and 9C). We conclude that DLI1 plays a central role in the stability or formation of the IFT dynein complex. DIC5 is not necessary for the stability of the dynein heavy chains, but instead is involved in their targeting to the base of the flagellum, since a dispersion of heavy.

FIGURE 6: DLI1 and DIC5 are flagellar proteins that display IFT. (A) Western blot of total protein extracts from cell lines expressing EGFP::DLI1 or EGFP::DIC5 and probed with an anti-GFP antibody. The L13D6 antibody detecting the paraflagellar rod (PFR) proteins was used as a loading control. (B) Cells expressing EGFP::DLI1 (left) or EGFP::DIC5 (right) were stained with the axoneme marker Mab25 (red) and the anti-GFP (green on top row, white in other lanes). Slides were counterstained with DAPI (blue) to reveal DNA in the nucleus and the kinetoplast. Both dynein chains are found in the flagellum, at the flagellar base, and in the cytoplasm. (C) Still images of cells expressing EGFP::DLI1 or EGFP::DIC5 at the indicated time point at two trains showing anterograde movement.
that dyneins were found in a compartment above the basal body marker Mab22 (unpublished data) but below the short axoneme stained with Mab25, whereas the IFT172 marker was found even further toward the far end of the dilated short flagellum (Figure 10B, inset). We conclude that the IFT dynein components are targeted normally to the flagellar base but fail to enter the flagellar compartment in the IFT140RNAi mutant. This suggests that the IFT-A complex is involved in penetration of the IFT dynein in the flagellum, possibly by driving association to IFT trains or the IFT-B complex or by contributing to the passage through the transition zone.

DISCUSSION

A motile heterodimer of dynein heavy chains

To our knowledge, this is the first evidence in any eukaryote for the existence of a heterodimer of dynein heavy chains able to move along microtubules. So far, all reported cytoplasmic and IFT dynein complexes function as homodimers of heavy chains (Vale, 2003; Hom et al., 2011; Schiavo et al., 2013). Heterodimers (or even heterotrimers) of dynein heavy chains are active in the axoneme but are attached on microtubule doublets and do not proceed along them as does the IFT dynein (DiBella and King, 2001). The existence of a heterodimer of the nonmotor dynein chain Roadblock has been reported in mammals. This could contribute to enlarge the repertoire of dynein complexes available in the cytoplasm (Nikulina et al., 2004). Strictly speaking, the existence of homodimers of DHC2.1 or DHC2.2 in T. brucei cannot be ruled out. However, several
arguments do not support their existence. First, knocking down any single DHC2 is sufficient to inhibit retrograde IFT and block normal flagellum formation. There is therefore no redundancy as observed for other duplicated genes in T. brucei (Dawe et al., 2005). Second, trafficking of GFP::DHC2.1 is no longer detected as soon as DHC2.2 is silenced. Third, the absence of one dynein heavy chain leads to the rapid loss of the other one, supporting the view that they exist mostly as partners and not as single homodimeric entities.

The duplication of the DHC2 genes must be ancient, as it is found in all species of kinetoplastids for which a genome is available: T. congolense, T. vivax, T. cruzi, all subspecies of Leishmania, and even the free-living Bodo saltans (Jackson et al., 2008), excluding an association to parasitism. The evolutionary advantages of such a heterodimeric configuration remain to be established, but it could be related to the specific organization of the trypanosome flagellum (presence of a paralflagellar rod and an attachment region; Kohl and Bastin, 2005; Ralston et al., 2009). Alternatively, the reason could be sought in the unusually fast IFT retrograde rate in trypanosomes, which can be up to 7 μm/s, compared with <4 μm/s in other systems (Buisson et al., 2013).

FIGURE 8: DLI1 is required for stability of the dynein heavy chains. (A) Western blot showing rapid loss of DHC2.1 during the course of RNAi silencing of DLI1. Cells were grown in the presence of tetracycline for the indicated periods of time. Total protein samples were separated by SDS–PAGE, blotted to a PVDF membrane, and incubated with the anti-DHC2.1 antibody. The anti-ALBA antibody was used as a loading control. (B, C) DLI1RNAi cells expressing EGFP::DHC2.1 (B) or EGFP::DIC5 (C) were noninduced or grown in tetracycline for 72 h and stained with the axoneme marker Mab25 (red) and the anti-GFP (green). Both dynein chains are found in the flagellum, at the flagellar base, and in the cytoplasm in control cells, but their amount drops significantly in the DLI1RNAi mutant. They are not found in the short flagellum.
inhibits formation of axonemal dynein arms but does not perturb flagellum elongation (Omran et al., 2008; Duquesnoy et al., 2009).

Heavy chains and the light IC appear essential for the formation and/or stability of the IFT dynein complex or its individual components. When one of these components is depleted, the abundance of the other partners drops and they appear dispersed in the cytoplasm, with little or no material at the flagellar base or within the flagellum. This is supported by analysis of *Chlamydomonas* mutants lacking either DHC2 or DLI1: the amount of each partner is significantly reduced in the absence of the other one (Hou et al., 2004; Morga and Bastin, 2013).

After assembly, the IFT dynein complex needs to reach the flagellar base, a process that takes place less efficiently in the DIC5RNAi mutant. DIC5 was identified in a comparative genomic screen for proteins conserved only in species with motile cilia (Baron et al., 2007). Its RNAi knockdown in *T. brucei* resulted in reduced motility, inhibits formation of axonemal dynein arms but does not perturb flagellum elongation (Omran et al., 2008; Duquesnoy et al., 2009).

Heavy chains and the light IC appear essential for the formation and/or stability of the IFT dynein complex or its individual components. When one of these components is depleted, the abundance of the other partners drops and they appear dispersed in the cytoplasm, with little or no material at the flagellar base or within the flagellum. This is supported by analysis of *Chlamydomonas* mutants lacking either DHC2 or DLI1: the amount of each partner is significantly reduced in the absence of the other one (Hou et al., 2004; Morga and Bastin, 2013).

After assembly, the IFT dynein complex needs to reach the flagellar base, a process that takes place less efficiently in the DIC5RNAi mutant. DIC5 was identified in a comparative genomic screen for proteins conserved only in species with motile cilia (Baron et al., 2007). Its RNAi knockdown in *T. brucei* resulted in reduced motility,
but the phenotype was not analyzed further (Baron et al., 2007). In zebrafish, reducing the expression of DIC5 by the injection of morpholino oligonucleotides interfered with cilia formation in eye and kidney (Krock et al., 2009), a phenomenon also reported in mammalian cells upon small interfering RNA transfection (Asante et al., 2007). In the induced DIC5\(^{\text{RNAi}}\) cell line, the amounts of heavy and light intermediate chains are slightly reduced, but their distribution between the dynein motor and the IFT-B complex during anterograde transport, but evidence for direct interactions is scarce (Rompolas et al., 2007). The IFT-A complex could be essential to retrograde transport by different means: it could function as a bridge between the dynein motor and the IFT-B complex during anterograde transport, it could control motor transition between kinesin and dynein at the distal tip, or it could be responsible for access of the IFT dynein to the flagellum. In all cases, its malfunctioning would perturb retrograde transport. In T. brucei, all four dynein subunits investigated here are jammed at the flagellar base in the IFT140\(^{\text{RNAi}}\) mutant and not encountered in the flagellum. A similar situation was reported for D1bLIC/XBX1 in the C. elegans che-11 mutant (the homologue of IFT140), although some transport could still be detected in the cilia (Schafer et al., 2003), perhaps because the penetrance of the IFT-A mutations in nematodes is weaker than what is observed for trypanosomes (Blacque et al., 2006; Absalon et al., 2008b; Adhiambo et al., 2009). We propose that the IFT-A complex is required for efficient entry of the IFT dynein in the flagellar compartment. This could be achieved by docking to the IFT-B complex or to the IFT kinesin 2, as observed in Chlamydomonas using immunoprecipitation techniques (Pedersen et al., 2006). Alternatively, the IFT-A complex could function as an adapter to allow the passage of the transition zone. In this case, interactions between IFT-A and IFT dynein proteins would be transient, hence explaining the low amount of copurified material reported so far (Rompolas et al., 2007). Such interaction could be favored by the high local concentration of IFT material encountered at the flagellar base (Morga and Bastin, 2013), possibly explaining why IFT has only been reported in the flagellum, despite the presence of large amounts of IFT material in the cytoplasm (Ahmed et al., 2008; Wang et al., 2009). Understanding how IFT complexes and IFT motors interact at the base of the flagellum to ensure formation of anterograde trains and recycling of retrograde trains will be the next challenge.

MATERIALS AND METHODS

Trypanosome cell lines and cultures

All cell lines used for this work were derivatives of strain 427 of T. brucei and cultured in SDM79 medium supplemented with hemin and 10% fetal calf serum. The cell line DHC2.2\(^{\text{RNAi}}\) has been described previously (Kohl et al., 2009). It expresses complementary single-stranded RNA corresponding to a fragment of the gene of interest from two tetracycline-inducible T7 promoters facing each other in the pZJM vector (Wang et al., 2000) transformed in 29-13 cells that express the T7 RNA polymerase and the tetracycline repressor (Wirtz et al., 1999). Addition of tetracycline (1 µg/ml) to the medium induces expression of sense and antisense RNA strands that can anneal to form double-stranded RNA (dsRNA) and trigger RNAi.

Plasmid construction and transformation in trypanosomes

For generation of cell lines expressing dsRNA for RNAi knockdown, sequences were selected according to their lack of significant identity with other genes to avoid cross-RNAi (Durand-Dubief et al., 2003) using the RNAiit algorithm (Redmond et al., 2003). Primers are available on request from the authors. Gene fragments were amplified by PCR on T. brucei genomic DNA, purified on QIA-Quick.

TABLE 1: Strains used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT+ GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>WT+ GFP::DHC2.2</td>
<td></td>
</tr>
<tr>
<td>WT+ GFP::DLI1</td>
<td></td>
</tr>
<tr>
<td>WT+ GFP::DIC5</td>
<td></td>
</tr>
<tr>
<td>DHC2.1(^{\text{RNAi}})</td>
<td></td>
</tr>
<tr>
<td>DHC2.1(^{\text{RNAi}}) + GFP::DHC2.2</td>
<td></td>
</tr>
<tr>
<td>DHC2.1(^{\text{RNAi}}) + GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>DHC2.1(^{\text{RNAi}}) + GFP::DLI1</td>
<td></td>
</tr>
<tr>
<td>DHC2.1(^{\text{RNAi}}) + GFP::DIC5</td>
<td></td>
</tr>
<tr>
<td>DHC2.2(^{\text{RNAi}})</td>
<td></td>
</tr>
<tr>
<td>DHC2.2(^{\text{RNAi}}) + GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>DLI1(^{\text{RNAi}})</td>
<td></td>
</tr>
<tr>
<td>DLI1(^{\text{RNAi}}) + GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>DLI1(^{\text{RNAi}}) + GFP::DIC5</td>
<td></td>
</tr>
<tr>
<td>DIC5(^{\text{RNAi}})</td>
<td></td>
</tr>
<tr>
<td>DIC5(^{\text{RNAi}}) + GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>DIC5(^{\text{RNAi}}) + GFP::DLI1</td>
<td></td>
</tr>
<tr>
<td>IFT140(^{\text{RNAi}})</td>
<td></td>
</tr>
<tr>
<td>IFT140(^{\text{RNAi}}) + GFP::DHC2.1</td>
<td></td>
</tr>
<tr>
<td>IFT140(^{\text{RNAi}}) + GFP::DLI1</td>
<td></td>
</tr>
<tr>
<td>IFT140(^{\text{RNAi}}) + GFP::DIC5</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 10: The IFT-A IFT140 protein is required for entry of the IFT dynein complex in the flagellum. (A) Western blot showing that the amounts of DHC2.1 are not modified during the course of RNAi silencing of IFT140. Cells were grown in the presence of tetracycline for the indicated periods of time. Total protein samples were separated by SDS–PAGE, blotted to a PVDF membrane, and incubated with the anti-DHC2.1 antibody. The anti-ALBA antibody was used as a loading control. (B, C) IFT140RNAi cells expressing EGFP::DHC2.1 (B) or EGFP::DIC5 (C) were noninduced or grown in tetracycline for 60 h and stained with the axoneme marker Mab25 (red) and the anti-GFP (green). Both dynein chains are found in the flagellum, at the flagellar base, and in the cytoplasm in control cells but are concentrated at the base of the short flagellum in the IFT140RNAi mutant. They are not found in the short flagellum. The magnified area shows the base of a short flagellum. The GFP signal for the GFP::DHC2.1 fusion is found well below the axoneme, presumably at the level of the transition zone, whereas the accumulated IFT172 material (green) is found at the distal end of the flagellum.
4. Anterograde transport as cargo
IFTB-dependent

5. Active retrograde transport
DHC2.1/DHC2.2/DLI1/DIC5-dependent

3. Loading on IFT trains
IFT140-dependent

2. Access to base
DIC5-dependent

1. Complex formation
DLI1-dependent

FIGURE 11: Molecular model for IFT dynein complex formation and function. The dependence on specific molecules is indicated in red for each step. 1) Dynein subunits are assembled in the cytoplasm to form the dynein complex. This step relies on all four subunits but more specifically on DLI1. 2) The IFT dynein complex reaches the base of the flagellum. This step depends on the presence of DIC5. 3) The dynein complex is loaded on IFT trains in an IFT140 (or the full IFT-A complex)–dependent manner. 4) The dynein complex is a cargo of the anterograde train and is transported to the tip of the axoneme. This relies on anterograde transport and hence on IFT-B and kinesin motor (not drawn here). 5) The short retrograde trains are returned to the base of the flagellum. An intact IFT dynein complex is required, since the depletion of any of its components is sufficient to abolish retrograde IFT. Not drawn to scale. The space between the microtubules and the membrane has been enlarged to facilitate representation of IFT trains. BB, basal body; TZ, transition zone.

Protein expression and antibody production

Given their large size and the close similarity of their central portion, only a fragment of DHC2.1 and DHC2.2 was cloned and expressed in *Escherichia coli*, using the pGEXK vector for protein expression. The plasmids were sequenced to confirm identity and correct fusion with glutathione S-transferase (GST). Plasmids were transformed in the competent BL21 strain of *E. coli*, and protein expression was analyzed by SDS–PAGE followed by Coomassie staining. The domains expressed are from aa 323–488 for DHC2.1 and 308–509 for DHC2.2. GST-coupled proteins were purified as described (Smith and Johnson, 1988) and injected into BALB/C mice for immunization. After bleeding, sera were absorbed against GST. Sera from mice immunized with GST alone were used as negative controls.

Immunofluorescence and light microscopy analysis

For immunofluorescence, cells were washed in SDM79 medium without serum, settled on poly-L-lysine–coated slides, and fixed in methanol for a maximum of 5 min at −20°C. Slides were incubated with 1:200 dilution of antiserum for 45–60 min in phosphate-buffered saline (PBS)–bovine serum albumin (0.1%). Slides were washed in PBS and incubated with the appropriate anti-mouse secondary antibodies coupled to various fluorophores (Invitrogen, Carlsbad, CA). The monoclonal antibody Mab25 (immunoglobulin G2a [IgG2a]; Pradel et al., 2006), which specifically recognizes the axoneme protein TsSAXO1 (Dacheux et al., 2012), was used as marker of flagellum assembly. The monoclonal antibody MAb22 is an IgM that detects an as-yet-unidentified antigen found at the proximal zone of the basal body (Bonhivers et al., 2008). GFP was observed directly or upon fixation by immunofluorescence using a 1:500 dilution of a rabbit anti-GFP antibody (Invitrogen). The mouse anti-DHC2.1 and anti-DHC2.2 antibodies were used at a 1:100 dilution. Subclass-specific secondary antibodies coupled to fluorescein isothiocyanate (Sigma-Aldrich, St. Louis, MO), Alexa 488 or Alexa 594 (Invitrogen), and Cy3 or Cy5 (Jackson ImmunoResearch, West Grove, PA) were used for double or triple labeling. Slides were stained with 4′,6-diamidino-2-phenylindole (DAPI) for visualization of kinetoplast and nuclear DNA content. Samples were observed with a DMI4000 Leica microscope, and images were acquired with a Retiga-SRV (Q-Imaging, Surrey, Canada) or a Horca O3G (Hamamatsu, Hamamatsu City, Japan) camera. Images were analyzed using ImageJ (National Institutes of Health, Bethesda, MD). In the case of RNAi mutants, IFA signals were normalized using the signal obtained in non-induced controls as a reference.

For visualization of GFP on live cells, trypanosomes were treated as described (Buisson et al., 2013). For IFT quantification, a Zeiss inverted microscope (Axiovert 200; Jena, Germany) equipped with...
an oil immersion objective (magnification 63× with numerical aperture 1.4) and a spinning disk confocal head (CSU22; Yokogawa, Tokyo, Japan) were used. Images were acquired using Volocity software with an electron-multiplying charge-coupled device camera (C-9100; Hamamatsu) operating in streaming mode. A sample of cell (a 100-μl drop) was taken directly from the culture grown at (6–8) × 10⁶ cells/ml and trapped between slide and coverslip. The samples were kept at 27°C using a temperature-controlled chamber. The samples were used no longer than 30 min. For kymograph analysis, antero grade and retrograde transports were separately extracted and quantified as previously described (Chenouard et al., 2010; Buison et al., 2013).

Electron microscopy

Fixation, embedding, and sectioning for transmission electron microscopy were carried out as described previously (Absalon et al., 2008a). For scanning electron microscopy, cells were washed in PBS, fixed with 2.5% glutaraldehyde, and treated as reported previously (Absalon et al., 2007).

Western blot

Cells were washed in PBS, homogenized, and boiled in gel sample buffer before SDS–PAGE. Proteins were transferred to polyvinylidene fluoride (PVDF) membranes that were blocked with 5% milk and probed with an anti-GFP antibody (1:800 dilution; Roche), or with the anti-DHC2.1 (1:100) or the anti-DHC2.2 (1:100). The anti-ALBA (dilution 1:1000; Subota et al., 2011) or the anti-PFR antibody L13D6 (dilution 1:50; Kohl et al., 1999) served as loading control. Bound antibodies were revealed with ECL+ (Amersham).

ACKNOWLEDGMENTS

We acknowledge Derrick Robinson (University of Bordeaux 2, Bordeaux, France) for the generous gift of monoclonal antibodies and Brice Rotureau for critical reading of the manuscript. J.B. and Bordeaux, France) for the generous gift of monoclonal antibodies were revealed with ECL+ (Amersham).

REFERENCES

