V. Bockstal, P. Guirnalda, G. Caljon, R. Goenka, and J. Telfer, T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis, PLoS Pathogens, vol.28, issue.125, p.1002089, 2011.
DOI : 10.1371/journal.ppat.1002089.s009

URL : https://hal.archives-ouvertes.fr/hal-00014164

V. Coustou, F. Guegan, N. Plazolles, and T. Baltz, Complete In Vitro Life Cycle of Trypanosoma congolense: Development of Genetic Tools, PLoS Neglected Tropical Diseases, vol.26, issue.5, p.618, 2010.
DOI : 10.1371/journal.pntd.0000618.s003

URL : https://hal.archives-ouvertes.fr/hal-00522686

N. Chamond, A. Cosson, M. Blom-potar, G. Jouvion, D. Archivio et al., Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters, PLoS Neglected Tropical Diseases, vol.97, issue.1, p.792, 2010.
DOI : 10.1371/journal.pntd.0000792.g004

T. Baral, D. Baetselier, P. Brombacher, F. Magez, and S. , Infection Is IgM Mediated and Does Not Require a Type I Inflammatory Response, The Journal of Infectious Diseases, vol.195, issue.10, pp.1513-1520, 2007.
DOI : 10.1086/515577

D. Saerens, B. Stijlemans, T. Baral, N. Thi, G. Wernery et al., Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens, Journal of Immunological Methods, vol.329, issue.1-2, pp.138-150, 2008.
DOI : 10.1016/j.jim.2007.10.005

O. Manual, Trypanosoma evansi infections (including surra), 2008.

M. Desquesnes, A. Dargantes, D. Lai, Z. Lun, and P. Holzmuller, Trypanosoma evansi and Surra: A Review and Perspectives on Transmission, Epidemiology and Control, Impact, and Zoonotic Aspects, 2013.

L. Greca, F. Magez, and S. , Vaccination against trypanosomiasis, Human Vaccines, vol.33, issue.11, pp.1225-1233, 2011.
DOI : 10.1371/journal.pntd.0000238

V. Delespaux and H. De-koning, Drugs and drug resistance in African trypanosomiasis, Drug Resistance Updates, vol.10, issue.1-2, pp.30-50, 2007.
DOI : 10.1016/j.drup.2007.02.004

M. Desquesnes, P. Holzmuller, D. Lai, A. Dargantes, and Z. Lun, Trypanosoma evansi and Surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects, 2013.

S. Reid, Trypanosoma evansi control and containment in Australasia, Trends in Parasitology, vol.18, issue.5, pp.219-224, 2002.
DOI : 10.1016/S1471-4922(02)02250-X

V. Nantulya and K. Lindqvist, Antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma vivax, T. congolense and T. brucei infections in cattle. Tropical medicine and parasitology: official organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fü r Technische Zusammenarbeit, p.267, 1989.

V. Nantulya, A. Musoke, F. Rurangirwa, N. Saigar, S. Minja et al., Monoclonal antibodies that distinguish Trypanosoma congolense, T. vivax and T. brucei, Parasite Immunology, vol.57, issue.4, pp.421-431, 1987.
DOI : 10.1016/0022-1759(80)90168-4

C. Hamers-casterman, T. Atarhouch, S. Muyldermans, G. Robinson, and C. Hammers, Naturally occurring antibodies devoid of light chains, Nature, vol.363, issue.6428, pp.446-448, 1993.
DOI : 10.1038/363446a0

B. Stijlemans, G. Caljon, S. Natesan, D. Saerens, and K. Conrath, High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis, PLoS Pathogens, vol.72, issue.Pt 2, p.1002072, 2011.
DOI : 10.1371/journal.ppat.1002072.t001

E. Pardon, T. Laeremans, S. Triest, S. Rasmussen, and A. Wohlkö-nig, A general protocol for the generation of Nanobodies for structural biology, Nature Protocols, vol.12, issue.3, pp.674-693, 2014.
DOI : 10.1021/ac901651r

S. Ditlev, R. Florea, M. Nielsen, T. Theander, and S. Magez, Utilizing Nanobody Technology to Target Non-Immunodominant Domains of VAR2CSA, PLoS ONE, vol.117, issue.1, p.84981, 2014.
DOI : 10.1371/journal.pone.0084981.s001

I. Vaneycken, N. Devoogdt, N. Van-gassen, C. Vincke, and C. Xavier, Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer, The FASEB Journal, vol.25, issue.7, pp.2433-2446, 2011.
DOI : 10.1096/fj.10-180331

T. Baral, S. Magez, B. Stijlemans, K. Conrath, and B. Vanhollebeke, Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor, Nature Medicine, vol.350, issue.5, pp.580-584, 2006.
DOI : 10.1038/nm1395

D. Vooght, L. Caljon, G. Stijlemans, B. , D. Baetselier et al., Expression and extracellular release of a functional anti-trypanosome Nanobody?? in Sodalis glossinidius, a bacterial symbiont of the tsetse fly, Microbial Cell Factories, vol.11, issue.1, p.23, 2012.
DOI : 10.1016/j.exppara.2011.02.018

K. Conrath, M. Lauwereys, M. Galleni, A. Matagne, and J. Frè-re, ??-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae, Antimicrobial Agents and Chemotherapy, vol.45, issue.10, pp.2807-2812, 2001.
DOI : 10.1128/AAC.45.10.2807-2812.2001

A. Ghahroudi, M. Desmyter, A. Wyns, L. Hamers, R. Muyldermans et al., Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, FEBS Letters, vol.15, issue.3, pp.521-526, 1997.
DOI : 10.1016/S0014-5793(97)01062-4

A. Skerra and A. Pluckthun, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science, vol.240, issue.4855, pp.1038-1041, 1988.
DOI : 10.1126/science.3285470

M. Durand-dubief, L. Kohl, and P. Bastin, Efficiency and specificity of RNA interference generated by intra- and intermolecular double stranded RNA in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.129, issue.1, pp.11-21, 2003.
DOI : 10.1016/S0166-6851(03)00071-9

R. Demonchy, T. Blisnick, C. Deprez, G. Toutirais, and C. Loussert, Kinesin 9 family members perform separate functions in the trypanosome flagellum, The Journal of Cell Biology, vol.93, issue.5, pp.615-622, 2009.
DOI : 10.1073/pnas.0406817101

I. Subota, B. Rotureau, T. Blisnick, S. Ngwabyt, and M. Durand-dubief, ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation, Molecular Biology of the Cell, vol.22, issue.22, pp.4205-4219, 2011.
DOI : 10.1091/mbc.E11-06-0511

URL : https://hal.archives-ouvertes.fr/pasteur-01371322

A. Schneider, T. Sherwin, R. Sasse, D. Russell, and K. Gull, Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms, The Journal of Cell Biology, vol.104, issue.3, pp.431-438, 1987.
DOI : 10.1083/jcb.104.3.431

A. Shevchenko, H. Tomas, J. Havlis, and J. Olsen, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nature Protocols, vol.5, issue.6, pp.2856-2860, 2007.
DOI : 10.1038/nprot.2006.468

P. Bastin, K. Ellis, L. Kohl, and K. Gull, Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system, J Cell Sci, vol.113, pp.3321-3328, 2000.

L. Pradel, M. Bonhivers, N. Landrein, and D. Robinson, NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, Journal of Cell Science, vol.119, issue.9, pp.1852-1863, 2006.
DOI : 10.1242/jcs.02900

URL : https://hal.archives-ouvertes.fr/hal-00215921

Z. Njiru, Rapid and sensitive detection of human African trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Diagnostic microbiology and infectious disease 69, pp.205-209, 2011.

W. Olaho-mukani, W. Munyua, M. Mutugi, and A. Njogu, Comparison of antibody- and antigen-detection enzyme immunoassays for the diagnosis of Trypanosoma evansi infections in camels, Veterinary Parasitology, vol.45, issue.3-4, pp.231-240, 1993.
DOI : 10.1016/0304-4017(93)90078-2

A. Abbady, A. Mariri, M. Zarkawi, A. Assad, and S. Muyldermans, Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel, Veterinary Immunology and Immunopathology, vol.142, issue.1-2, pp.49-56, 2011.
DOI : 10.1016/j.vetimm.2011.04.004

M. Abdille, S. Li, J. Ding, and X. Suo, Trypanosoma evansi: Paraflagellar rod protein 1 and 2 are similar but lack common B cell epitopes, Experimental Parasitology, vol.120, issue.4, pp.411-416, 2008.
DOI : 10.1016/j.exppara.2008.08.007

K. Schlaeppi, J. Deflorin, and T. Seebeck, The major component of the paraflagellar rod of Trypanosoma brucei is a helical protein that is encoded by two identical, tandemly linked genes, The Journal of Cell Biology, vol.109, issue.4, pp.1695-1709, 1989.
DOI : 10.1083/jcb.109.4.1695

J. Deflorin, R. M. Seebeck, and T. , The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci, J Biol Chem, vol.269, pp.28745-28751, 1994.

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-109, 1999.
DOI : 10.1083/jcb.104.3.439

R. Broadhead, H. Dawe, H. Farr, S. Griffiths, and S. Hart, Flagellar motility is required for the viability of the bloodstream trypanosome, Nature, vol.323, issue.7081, pp.224-227, 2006.
DOI : 10.1038/nature04541

M. Oberholzer, G. Langousis, H. Nguyen, E. Saada, and M. Shimogawa, Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei, Molecular & Cellular Proteomics, vol.10, issue.10, pp.111-010538, 2011.
DOI : 10.1074/mcp.M111.010538

I. Subota, D. Julkowska, L. Vincensini, N. Reeg, and J. Buisson, Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sublocalisation and dynamics, Molecular & Cellular, 2014.

P. Bastin, K. Matthews, and K. Gull, The paraflagellar rod of kinetoplastida: Solved and unsolved questions, Parasitology Today, vol.12, issue.8, pp.302-307, 1996.
DOI : 10.1016/0169-4758(96)10031-4

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypanosome motility, Nature, vol.391, issue.6667, pp.548-548, 1998.
DOI : 10.1038/35300

S. Griffiths, N. Portman, P. Taylor, S. Gordon, and M. Ginger, RNA Interference Mutant Induction In Vivo Demonstrates the Essential Nature of Trypanosome Flagellar Function during Mammalian Infection, Eukaryotic Cell, vol.6, issue.7, pp.1248-1250, 2007.
DOI : 10.1128/EC.00110-07

N. Portman, S. Lacomble, B. Thomas, P. Mckean, and K. Gull, Combining RNA Interference Mutants and Comparative Proteomics to Identify Protein Components and Dependences in a Eukaryotic Flagellum, Journal of Biological Chemistry, vol.284, issue.9, pp.5610-5619, 2009.
DOI : 10.1074/jbc.M808859200

N. Portman and K. Gull, The paraflagellar rod of kinetoplastid parasites: From structure to components and function, International Journal for Parasitology, vol.40, issue.2, pp.135-148, 2010.
DOI : 10.1016/j.ijpara.2009.10.005

V. Michailowsky, K. Luhrs, M. Rocha, D. Fouts, and R. Gazzinelli, Humoral and Cellular Immune Responses to Trypanosoma cruzi-Derived Paraflagellar Rod Proteins in Patients with Chagas' Disease, Infection and Immunity, vol.71, issue.6, pp.3165-3171, 2003.
DOI : 10.1128/IAI.71.6.3165-3171.2003

R. Wrightsman and J. Manning, Paraflagellar rod proteins administered with alum and IL-12 or recombinant adenovirus expressing IL-12 generates antigen-specific responses and protective immunity in mice against Trypanosoma cruzi, Vaccine, vol.18, issue.14, pp.1419-1427, 2000.
DOI : 10.1016/S0264-410X(99)00380-1

C. Gadelha, B. Wickstead, W. De-souza, K. Gull, and N. Cunha-e-silva, Cryptic Paraflagellar Rod in Endosymbiont-Containing Kinetoplastid Protozoa, Eukaryotic Cell, vol.4, issue.3, pp.516-525, 2005.
DOI : 10.1128/EC.4.3.516-525.2005