S. Absalon, T. Blisnick, M. Bonhivers, L. Kohl, N. Cayet et al., Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei, Journal of Cell Science, vol.121, issue.22, pp.3704-3716, 2008.
DOI : 10.1242/jcs.035626

URL : https://hal.archives-ouvertes.fr/hal-00426339

S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Dore et al., Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes, Molecular Biology of the Cell, vol.19, issue.3, pp.929-944, 2008.
DOI : 10.1091/mbc.E07-08-0749

URL : https://hal.archives-ouvertes.fr/pasteur-00217549

C. Adhiambo, T. Blisnick, G. Toutirais, E. Delannoy, and P. Bastin, A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum, Journal of Cell Science, vol.122, issue.6, pp.834-841, 2009.
DOI : 10.1242/jcs.040444

C. Alvarez, R. Garcia-mata, E. Brandon, and E. Sztul, COPI Recruitment Is Modulated by a Rab1b-dependent Mechanism, Molecular Biology of the Cell, vol.14, issue.5, pp.2116-2127, 2003.
DOI : 10.1091/mbc.E02-09-0625

P. Bastin, Z. Bagherzadeh, K. Matthews, and K. Gull, A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.77, issue.2, pp.235-239, 1996.
DOI : 10.1016/0166-6851(96)02598-4

S. Bhogaraju, L. Cajanek, C. Fort, T. Blisnick, K. Weber et al., Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81, Science, vol.341, issue.6149, pp.1009-1012, 2013.
DOI : 10.1126/science.1240985

S. Bhogaraju, M. Taschner, M. Morawetz, C. Basquin, E. Lorentzen et al., Crystal structure of the intraflagellar transport complex 25 The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport, The EMBO Journal Molecular Biology of the Cell, vol.27, issue.17, pp.5053-5062, 1907.

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, Journal of Cell Science, vol.119, issue.16, pp.3443-3455, 2006.
DOI : 10.1242/jcs.03078

URL : https://hal.archives-ouvertes.fr/hal-00108209

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, Journal of Cell Science, vol.126, issue.1, pp.327-338, 2013.
DOI : 10.1242/jcs.117069

G. Burkard, C. Fragoso, and I. Roditi, Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.153, issue.2, pp.220-223, 2007.
DOI : 10.1016/j.molbiopara.2007.02.008

V. Cantagrel, J. Silhavy, S. Bielas, D. Swistun, S. Marsh et al., Mutations in the Cilia Gene ARL13B Lead to the Classical Form of Joubert Syndrome, The American Journal of Human Genetics, vol.83, issue.2, pp.170-179, 2008.
DOI : 10.1016/j.ajhg.2008.06.023

N. Chenouard, J. Buisson, I. Bloch, P. Bastin, and J. Olivo-marin, Curvelet analysis of kymograph for tracking bi-directional particles in flurescence microscopy images, 17th IEEE International Conference on Image Processing (ICIP) 2010. Hong Kong, 2010.

D. Cole, The Intraflagellar Transport Machinery of Chlamydomonas reinhardtii, Traffic, vol.116, issue.7, pp.435-442, 2003.
DOI : 10.1034/j.1600-0854.2003.t01-1-00103.x

D. Cole, D. Diener, A. Himelblau, P. Beech, J. Fuster et al., Sensory Neurons, The Journal of Cell Biology, vol.47, issue.4, pp.993-1008, 1998.
DOI : 10.1073/pnas.93.16.8443

J. Davidge, E. Chambers, H. Dickinson, K. Towers, M. Ginger et al., Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation, Journal of Cell Science, vol.119, issue.19, pp.3935-3943, 2006.
DOI : 10.1242/jcs.03203

S. Dawson and S. House, Life with eight flagella: flagellar assembly and division in Giardia, Current Opinion in Microbiology, vol.13, issue.4, pp.480-490, 2010.
DOI : 10.1016/j.mib.2010.05.014

J. Dishinger, H. Kee, P. Jenkins, S. Fan, T. Hurd et al., Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-??2 and RanGTP, Nature Cell Biology, vol.147, issue.7, pp.703-710, 1038.
DOI : 10.1038/ncb2073

I. Drummond, Cilia functions in development, Current Opinion in Cell Biology, vol.24, issue.1, pp.24-30, 2012.
DOI : 10.1016/j.ceb.2011.12.007

S. Dutcher, The tubulin fraternity: alpha to eta, Current Opinion in Cell Biology, vol.13, issue.1, pp.49-54, 2001.
DOI : 10.1016/S0955-0674(00)00173-3

C. Enjolras, J. Thomas, B. Chhin, E. Cortier, J. Duteyrat et al., is required for basal body formation and ciliogenesis but not for Wg signaling, The Journal of Cell Biology, vol.11, issue.2, pp.313-325, 2012.
DOI : 10.1083/jcb.201012116

URL : https://hal.archives-ouvertes.fr/hal-00709925

M. Fliegauf, T. Benzing, and H. Omran, When cilia go bad: cilia defects and ciliopathies, Nature Reviews Molecular Cell Biology, vol.125, issue.11, pp.880-893, 2007.
DOI : 10.1038/nrm2278

J. Follit, F. Xu, B. Keady, and G. Pazour, Characterization of mouse IFT complex B, Cell Motility and the Cytoskeleton, vol.19, issue.8, pp.457-468, 2009.
DOI : 10.1002/cm.20346

J. Franklin and E. Ullu, Biochemical analysis of PIFTC3, the Trypanosoma brucei orthologue of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components, Molecular Microbiology, vol.178, pp.173-186, 2010.
DOI : 10.1111/j.1365-2958.2010.07322.x

C. Gadelha, B. Wickstead, P. Mckean, and K. Gull, Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes, Journal of Cell Science, vol.119, issue.12, pp.2405-2413, 2006.
DOI : 10.1242/jcs.02969

L. Kohl and P. Bastin, The Flagellum of Trypanosomes, International Review of Cytology, vol.244, issue.05, pp.227-285, 2005.
DOI : 10.1016/S0074-7696(05)44006-1

URL : https://hal.archives-ouvertes.fr/hal-00109408

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, The EMBO Journal, vol.22, issue.20, pp.5336-5346, 2003.
DOI : 10.1093/emboj/cdg518

URL : https://hal.archives-ouvertes.fr/hal-00108210

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-109, 1999.
DOI : 10.1083/jcb.104.3.439

K. Kozminski, P. Beech, and J. Rosenbaum, The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane, The Journal of Cell Biology, vol.131, issue.6, pp.1517-1527, 1995.
DOI : 10.1083/jcb.131.6.1517

K. Kozminski, K. Johnson, P. Forscher, and J. Rosenbaum, A motility in the eukaryotic flagellum unrelated to flagellar beating., Proceedings of the National Academy of Sciences, vol.90, issue.12, pp.5519-5523, 1993.
DOI : 10.1073/pnas.90.12.5519

E. Lee, E. Sivan-loukianova, D. Eberl, and M. Kernan, An IFT-A Protein Is Required to Delimit Functionally Distinct Zones in Mechanosensory Cilia, Current Biology, vol.18, issue.24, pp.1899-1906, 2008.
DOI : 10.1016/j.cub.2008.11.020

Y. Li, Q. Wei, Y. Zhang, K. Ling, and J. Hu, The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis, The Journal of Cell Biology, vol.266, issue.6, pp.1039-1051, 2010.
DOI : 10.1083/jcb.200912001.dv

B. Lucker, R. Behal, H. Qin, L. Siron, W. Taggart et al., Characterization of the Intraflagellar Transport Complex B Core: DIRECT INTERACTION OF THE IFT81 AND IFT74/72 SUBUNITS, Journal of Biological Chemistry, vol.280, issue.30, pp.27688-27696, 2005.
DOI : 10.1074/jbc.M505062200

M. Nachury, A. Loktev, Q. Zhang, C. Westlake, J. Peranen et al., A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis, Cell, vol.129, issue.6, pp.1201-1213, 2007.
DOI : 10.1016/j.cell.2007.03.053

URL : https://hal.archives-ouvertes.fr/hal-00183618

G. Ou, M. Koga, O. Blacque, T. Murayama, Y. Ohshima et al., Sensory Ciliogenesis in Caenorhabditis elegans: Assignment of IFT Components into Distinct Modules Based on Transport and Phenotypic Profiles, Molecular Biology of the Cell, vol.18, issue.5, pp.1554-1569, 2007.
DOI : 10.1091/mbc.E06-09-0805

M. Paduch, F. Jelen, and J. Otlewski, Structure of small G proteins and their regulators, Acta Biochimica Polonica, vol.48, pp.829-850, 2001.

G. Pazour, B. Dickert, Y. Vucica, E. Seeley, J. Rosenbaum et al., 737, Are Required for Assembly of Cilia and Flagella, The Journal of Cell Biology, vol.150, issue.3, pp.709-718, 2000.
DOI : 10.1083/jcb.129.1.169

G. Pazour, B. Dickert, and G. Witman, The DHC1b (DHC2) Isoform of Cytoplasmic Dynein Is Required for Flagellar Assembly, The Journal of Cell Biology, vol.107, issue.3, pp.473-481, 1999.
DOI : 10.1083/jcb.137.7.1537

G. Pazour, C. Wilkerson, and G. Witman, A Dynein Light Chain Is Essential for the Retrograde Particle Movement of Intraflagellar Transport (IFT), The Journal of Cell Biology, vol.108, issue.4, pp.979-992, 1998.
DOI : 10.1073/pnas.91.6.2100

L. Pedersen, S. Geimer, and J. Rosenbaum, Dissecting the Molecular Mechanisms of Intraflagellar Transport in Chlamydomonas, Current Biology, vol.16, issue.5, pp.450-459, 2006.
DOI : 10.1016/j.cub.2006.02.020

L. Perkins, E. Hedgecock, J. Thomson, and J. Culotti, Mutant sensory cilia in the nematode Caenorhabditis elegans, Developmental Biology, vol.117, issue.2, pp.456-487, 1986.
DOI : 10.1016/0012-1606(86)90314-3

L. Pradel, M. Bonhivers, N. Landrein, and D. Robinson, NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, Journal of Cell Science, vol.119, issue.9, pp.1852-1863, 2006.
DOI : 10.1242/jcs.02900

URL : https://hal.archives-ouvertes.fr/hal-00215921

H. Qin, Z. Wang, D. Diener, and J. Rosenbaum, Intraflagellar Transport Protein 27 Is a Small G Protein Involved in Cell-Cycle Control, Current Biology, vol.17, issue.3, 2007.
DOI : 10.1016/j.cub.2006.12.040

K. Ralston and K. Hill, The flagellum of Trypanosoma brucei: New tricks from an old dog, International Journal for Parasitology, vol.38, issue.8-9, pp.869-884, 2008.
DOI : 10.1016/j.ijpara.2008.03.003

K. Ralston, A. Lerner, D. Diener, and K. Hill, Flagellar Motility Contributes to Cytokinesis in Trypanosoma brucei and Is Modulated by an Evolutionarily Conserved Dynein Regulatory System, Eukaryotic Cell, vol.5, issue.4, pp.696-711, 2006.
DOI : 10.1128/EC.5.4.696-711.2006

F. Ramos, J. Araripe, T. Urmenyi, R. Silva, E. Cunha et al., Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity, Biochemical and Biophysical Research Communications, vol.333, issue.3, pp.808-817, 2005.
DOI : 10.1016/j.bbrc.2005.05.183

S. Redmond, J. Vadivelu, and M. Field, RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.128, issue.1, pp.115-118, 2003.
DOI : 10.1016/S0166-6851(03)00045-8

J. Reiter, O. Blacque, and M. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization, EMBO reports, vol.20, issue.7, pp.608-618, 2012.
DOI : 10.1038/embor.2012.73

C. Richardson, S. Jones, R. Litt, and N. Segev, GTP Hydrolysis Is Not Important for Ypt1 GTPase Function in Vesicular Transport, Molecular and Cellular Biology, vol.18, issue.2, pp.827-838, 1998.
DOI : 10.1128/MCB.18.2.827

D. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, issue.6337, pp.731-733, 1991.
DOI : 10.1038/352731a0

J. Rosenbaum and G. Witman, Intraflagellar transport, Nature Reviews Molecular Cell Biology, vol.418, issue.11, pp.813-825, 2002.
DOI : 10.1038/nrm952

B. Rotureau, I. Subota, and P. Bastin, Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle, Cellular Microbiology, vol.95, issue.5, pp.705-716, 2011.
DOI : 10.1111/j.1462-5822.2010.01566.x

URL : https://hal.archives-ouvertes.fr/pasteur-01371324

P. Satir and S. Christensen, Overview of Structure and Function of Mammalian Cilia, Annual Review of Physiology, vol.69, issue.1, pp.377-400, 2007.
DOI : 10.1146/annurev.physiol.69.040705.141236

J. Schafer, M. Winkelbauer, C. Williams, C. Haycraft, R. Desmond et al., IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans, Journal of Cell Science, vol.119, issue.19, pp.4088-4100, 2006.
DOI : 10.1242/jcs.03187

D. Silva, X. Huang, R. Behal, D. Cole, and H. Qin, The RABL5 homolog IFT22 regulates the cellular pool size and the amount of IFT particles partitioned to the flagellar compartment in Chlamydomonas reinhardtii, Cytoskeleton, vol.192, issue.6, pp.33-48, 2012.
DOI : 10.1002/cm.20546

D. Smith and K. Johnson, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene, vol.67, issue.1, pp.31-40, 1988.
DOI : 10.1016/0378-1119(88)90005-4

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nature Reviews Molecular Cell Biology, vol.178, issue.8, pp.513-525, 2009.
DOI : 10.1038/nrm2728

M. Taschner, S. Bhogaraju, M. Vetter, M. Morawetz, and E. Lorentzen, Biochemical Mapping of Interactions within the Intraflagellar Transport (IFT) B Core Complex, Journal of Biological Chemistry, vol.286, issue.30, pp.26344-26352, 2011.
DOI : 10.1074/jbc.M111.254920

J. Thomas, L. Morle, F. Soulavie, A. Laurencon, S. Sagnol et al., Transcriptional control of genes involved in ciliogenesis: a first step in making cilia Evolution of modular intraflagellar transport from a coatomer-like progenitor, Biology of the Cell Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.110, pp.499-5136943, 2010.

Z. Wang, Z. Fan, S. Williamson, and H. Qin, Intraflagellar Transport (IFT) Protein IFT25 Is a Phosphoprotein Component of IFT Complex B and Physically Interacts with IFT27 in Chlamydomonas, PLoS ONE, vol.176, issue.5, 2009.
DOI : 10.1371/journal.pone.0005384.s001

Z. Wang, J. Morris, M. Drew, and P. Englund, Inhibition of Trypanosoma brucei Gene Expression by RNA Interference Using an Integratable Vector with Opposing T7 Promoters, Journal of Biological Chemistry, vol.275, issue.51, pp.40174-40179, 2000.
DOI : 10.1074/jbc.M008405200

C. Williams, C. Li, K. Kida, P. Inglis, S. Mohan et al., MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis, The Journal of Cell Biology, vol.11, issue.6, pp.1023-1041, 2011.
DOI : 10.1016/j.tig.2010.01.006

E. Wirtz, S. Leal, C. Ochatt, and G. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.99, issue.1, pp.89-101, 1999.
DOI : 10.1016/S0166-6851(99)00002-X