E. G. Bligh and W. J. Dyer, A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION, Canadian Journal of Biochemistry and Physiology, vol.37, issue.8, pp.911-917, 1959.
DOI : 10.1139/o59-099

N. Bochud-allemann and A. Schneider, Mitochondrial Substrate Level Phosphorylation Is Essential for Growth of Procyclic Trypanosoma brucei, Journal of Biological Chemistry, vol.277, issue.36, pp.32849-32854, 2002.
DOI : 10.1074/jbc.M205776200

B. Bru?-gger, G. Erben, R. Sandhoff, F. T. Wieland, and W. D. Lehmann, Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionisation tandem mass spectrometry, Proc. Natl. Acad. Sci. USA 94, pp.2339-2344, 1997.

B. Brugger, B. Glass, P. Haberkant, I. Leibrecht, F. T. Wieland et al., The HIV lipidome: A raft with an unusual composition, Proc. Natl. Acad. Sci. USA 103, pp.2641-2646, 2006.
DOI : 10.1073/pnas.0511136103

H. Burger, S. Abel, P. W. Snijman, S. Swanevelder, and W. C. Gelderblom, Altered Lipid Parameters in Hepatic Subcellular Membrane Fractions Induced by Fumonisin B1, Lipids, vol.41, issue.3, pp.249-261, 2007.
DOI : 10.1007/s11745-007-3025-9

R. O. Calderon and G. H. Devries, Lipid composition and phospholipid asymmetry of membranes from a Schwann cell line, Journal of Neuroscience Research, vol.49, issue.3, pp.372-380, 1997.
DOI : 10.1002/(SICI)1097-4547(19970801)49:3<372::AID-JNR12>3.3.CO;2-6

B. Chailley and E. Boisvieux-ulrich, Detection of plasma membrane cholesterol by filipin during microvillogenesis and ciliogenesis in quail oviduct., Journal of Histochemistry & Cytochemistry, vol.33, issue.1, pp.1-10, 1985.
DOI : 10.1177/33.1.3965567

L. M. Contreras, J. Vivas, and J. A. Urbina, Altered lipid composition and enzyme activities of plasma membranes from Trypanosoma (Schizotrypanum) Cruzi epimastigotes grown in the presence of sterol biosynthesis inhibitors, Biochemical Pharmacology, vol.53, issue.5, pp.697-704, 1997.
DOI : 10.1016/S0006-2952(96)00903-3

D. Dacheux, N. Landrein, M. Thonnus, G. Gilbert, A. Sahin et al., A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility, PLoS ONE, vol.123, issue.Pt 3, 2012.
DOI : 10.1371/journal.pone.0031344.s008

URL : https://hal.archives-ouvertes.fr/hal-01101397

D. Souza and W. , Structural organization of the cell surface of pathogenic protozoa, Micron, vol.26, issue.5, pp.405-430, 1995.
DOI : 10.1016/0968-4328(95)00010-0

H. Dixon, C. D. Ginger, and J. Williamson, The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.39, issue.2, pp.247-266, 1971.
DOI : 10.1016/0305-0491(71)90168-4

H. Dixon, C. D. Ginger, and J. Williamson, Trypanosome sterols and their metabolic origins, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.41, issue.1, pp.1-18, 1972.
DOI : 10.1016/0305-0491(72)90002-8

D. M. Engman, K. H. Krause, J. H. Blumin, K. S. Kim, L. V. Kirchhoff et al., A novel flagellar Ca2+-binding protein in trypanosomes, J. Biol. Chem, vol.264, pp.18627-18631, 1989.

C. Giroud, F. Ottones, V. Coustou, D. Dacheux, N. Biteau et al., Murine Models for Trypanosoma brucei gambiense Disease Progression???From Silent to Chronic Infections and Early Brain Tropism, PLoS Neglected Tropical Diseases, vol.47, issue.1, p.509, 2009.
DOI : 10.1371/journal.pntd.0000509.t003

URL : https://hal.archives-ouvertes.fr/hal-00426327

J. L. Guler, E. Kriegova, T. K. Smith, J. Lukes?, and P. T. Englund, Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei, Molecular Microbiology, vol.259, issue.5, pp.1125-1142, 2008.
DOI : 10.1016/j.molbiopara.2006.04.007

?. Gu, M. L. Ther, S. Lee, L. Tetley, A. Acosta-serrano et al., GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat, Mol. Biol. Cell, vol.17, pp.5265-5274, 2006.

O. Hanrahan, H. Webb, R. O-'byrne, E. Brabazon, A. Treumann et al., The Glycosylphosphatidylinositol-PLC in Trypanosoma brucei Forms a Linear Array on the Exterior of the Flagellar Membrane Before and After Activation, PLoS Pathogens, vol.104, issue.23, 2009.
DOI : 10.1371/journal.ppat.1000468.s003

T. Houjou, K. Yamatani, H. Nakanishi, M. Imagawa, T. Shimizu et al., Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3, Rapid Communications in Mass Spectrometry, vol.15, issue.24, pp.3123-3130, 2004.
DOI : 10.1002/rcm.1737

E. S. Kaneshiro, D. F. Matesic, and K. Jayasimhulu, Characterizations of six ethanolamine sphingophospholipids from Paramecium cells and cilia, J. Lipid Res, vol.25, pp.369-377, 1984.

P. G. Kennedy, Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness), The Lancet Neurology, vol.12, issue.2, pp.186-194, 2013.
DOI : 10.1016/S1474-4422(12)70296-X

J. L. Kerwin, A. R. Tuininga, and L. H. Ericsson, Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry, J. Lipid Res, vol.35, pp.1102-1114, 1994.

L. Kohl and P. Bastin, The Flagellum of Trypanosomes, Int. Rev. Cytol, vol.244, pp.227-285, 2005.
DOI : 10.1016/S0074-7696(05)44006-1

URL : https://hal.archives-ouvertes.fr/hal-00109408

D. J. Lacount, B. Barrett, and J. E. Donelson, Trypanosoma brucei FLA1 Is Required for Flagellum Attachment and Cytokinesis, Journal of Biological Chemistry, vol.277, issue.20, pp.17580-17588, 2002.
DOI : 10.1074/jbc.M200873200

G. Langousis and K. L. Hill, Motility and more: the flagellum of Trypanosoma brucei, Nature Reviews Microbiology, vol.94, issue.7, pp.505-518, 2014.
DOI : 10.1242/jcs.117069

A. N. Malviya, M. M. Gabellec, and G. Rebel, Plasma membrane lipids of bovine adrenal chromaffin cells, Lipids, vol.326, issue.6, pp.417-419, 1986.
DOI : 10.1007/BF02534939

D. Maric, B. S. Mcgwire, K. T. Buchanan, C. L. Olson, B. T. Emmer et al., Molecular Determinants of Ciliary Membrane Localization of Trypanosoma cruzi Flagellar Calcium-binding Protein, Journal of Biological Chemistry, vol.286, issue.38, pp.33109-33117, 2011.
DOI : 10.1074/jbc.M111.240895

M. Oberholzer, G. Langousis, H. T. Nguyen, E. A. Saada, M. M. Shimogawa et al., Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei, Molecular & Cellular Proteomics, vol.10, issue.10, pp.111-010538, 2011.
DOI : 10.1074/mcp.M111.010538

E. O. Ogbadoyi, D. R. Robinson, and K. Gull, A High-Order Trans-Membrane Structural Linkage Is Responsible for Mitochondrial Genome Positioning and Segregation by Flagellar Basal Bodies in Trypanosomes, Molecular Biology of the Cell, vol.14, issue.5, pp.1769-1779, 2003.
DOI : 10.1091/mbc.E02-08-0525

A. G. Ostermeyer, B. T. Beckrich, K. A. Ivarson, K. E. Grove, and D. A. Brown, Glycosphingolipids Are Not Essential for Formation of Detergent-resistant Membrane Rafts in Melanoma Cells: METHYL-??-CYCLODEXTRIN DOES NOT AFFECT CELL SURFACE TRANSPORT OF A GPI-ANCHORED PROTEIN, Journal of Biological Chemistry, vol.274, issue.48, pp.34459-34466, 1999.
DOI : 10.1074/jbc.274.48.34459

F. Paltauf, Ether lipids in biomembranes, Chemistry and Physics of Lipids, vol.74, issue.2, pp.101-139, 1994.
DOI : 10.1016/0009-3084(94)90054-X

R. Pankov, T. Markovska, P. Antonov, L. Ivanova, and A. Momchilova, The plasma membrane lipid composition affects fusion between cells and model membranes, Chemico-Biological Interactions, vol.164, issue.3, pp.167-173, 2006.
DOI : 10.1016/j.cbi.2006.09.010

P. K. Patnaik, M. C. Field, A. K. Menon, G. A. Cross, M. C. Yee et al., Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms, Molecular and Biochemical Parasitology, vol.58, issue.1, pp.97-105, 1993.
DOI : 10.1016/0166-6851(93)90094-E

L. C. Pradel, M. Bonhivers, N. Landrein, and D. R. Robinson, NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, Journal of Cell Science, vol.119, issue.9, pp.1852-1863, 2006.
DOI : 10.1242/jcs.02900

URL : https://hal.archives-ouvertes.fr/hal-00215921

S. Ramakrishnan, M. Serricchio, B. Striepen, and P. Bu?-tikofer, Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans, Progress in Lipid Research, vol.52, issue.4, pp.488-512, 2013.
DOI : 10.1016/j.plipres.2013.06.003

S. Redmond, J. Vadivelu, and M. C. Field, RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.128, issue.1, pp.115-118, 2003.
DOI : 10.1016/S0166-6851(03)00045-8

G. S. Richmond, F. Gibellini, S. A. Young, L. Major, H. Denton et al., Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei, Parasitology, vol.1488, issue.09, pp.1357-1392, 2010.
DOI : 10.1016/0010-406X(70)90487-1

D. R. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, issue.6337, pp.731-733, 1991.
DOI : 10.1038/352731a0

B. Rotureau, T. Blisnick, I. Subota, D. Julkowska, N. Cayet et al., Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body, Journal of Cell Science, vol.127, issue.1, pp.204-215, 2014.
DOI : 10.1242/jcs.136424

URL : https://hal.archives-ouvertes.fr/pasteur-01301211

M. Serricchio, ?. Bu, and P. Tikofer, : a model micro-organism to study eukaryotic phospholipid biosynthesis, FEBS Journal, vol.62, issue.7, pp.1035-1046, 2011.
DOI : 10.1111/j.1742-4658.2011.08012.x

M. Serricchio and P. Bu?-tikofer, An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote, Proc. Natl. Acad. Sci. USA, pp.954-961, 2012.
DOI : 10.1073/pnas.1121528109

A. Signorell, M. Rauch, J. Jelk, M. A. Ferguson, ?. Bu et al., Phosphatidylethanolamine in Trypanosoma brucei Is Organized in Two Separate Pools and Is Synthesized Exclusively by the Kennedy Pathway, Journal of Biological Chemistry, vol.283, issue.35, pp.23636-23644, 2008.
DOI : 10.1074/jbc.M803600200

T. K. Smith and P. Bu?-tikofer, Lipid metabolism in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.172, issue.2, pp.66-79, 2010.
DOI : 10.1016/j.molbiopara.2010.04.001

I. Subota, D. Julkowska, L. Vincensini, N. Reeg, J. Buisson et al., Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics, Molecular & Cellular Proteomics, vol.13, issue.7, pp.1769-1786, 2014.
DOI : 10.1074/mcp.M113.033357

URL : https://hal.archives-ouvertes.fr/pasteur-01301216

S. Y. Sun, C. Wang, Y. A. Yuan, and C. Y. He, An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei, Journal of Cell Science, vol.126, issue.2, pp.520-531, 2013.
DOI : 10.1242/jcs.113621

J. D. Sunter, V. Varga, S. Dean, and K. Gull, A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes, Journal of Cell Science, vol.128, issue.8, pp.1580-1594, 2015.
DOI : 10.1242/jcs.166447

S. S. Sutterwala, F. Hsu, E. S. Sevova, K. J. Schwartz, K. Zhang et al., Developmentally regulated sphingolipid synthesis in African trypanosomes, Molecular Microbiology, vol.278, issue.2, pp.281-296, 2008.
DOI : 10.1111/j.1365-2958.2008.06393.x

L. Tetley, Freeze-fracture studies on the surface membranes of pleomorphic bloodstream and in vitro transformed procyclic Trypanosoma brucei, Acta Trop, vol.43, pp.307-317, 1986.

L. Tetley, G. H. Coombs, and K. Vickerman, The surface membrane ofLeishmania mexicana mexicana: Comparison of amastigote and promastigote using freeze-fracture cytochemistry, Zeitschrift f???r Parasitenkunde Parasitology Research, vol.74, issue.3, pp.281-292, 1986.
DOI : 10.1007/BF00928737

K. M. Tyler, A. Fridberg, K. M. Toriello, C. L. Olson, J. A. Cieslak et al., Flagellar membrane localization via association with lipid rafts, Journal of Cell Science, vol.122, issue.6, pp.859-866, 2009.
DOI : 10.1242/jcs.037721

S. Vaughan, Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei, Current Opinion in Microbiology, vol.13, issue.4, pp.453-458, 2010.
DOI : 10.1016/j.mib.2010.05.006

L. Vincensini, T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella, Biology of the Cell, vol.69, issue.3, pp.109-130, 2011.
DOI : 10.1042/BC20100104

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.99, issue.1, pp.89-101, 1999.
DOI : 10.1016/S0166-6851(99)00002-X

Q. Zhou, L. Gheiratmand, Y. Chen, T. K. Lim, J. Zhang et al., A Comparative Proteomic Analysis Reveals a New Bi-Lobe Protein Required for Bi-Lobe Duplication and Cell Division in Trypanosoma brucei, PLoS ONE, vol.5, issue.3, p.9660, 2010.
DOI : 10.1371/journal.pone.0009660.s010

Q. Zhou, H. Hu, C. Y. He, and Z. Li, Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei, Journal of Cell Science, vol.128, issue.13, pp.2361-2372, 2015.
DOI : 10.1242/jcs.168377