P. Simarro, A. Diarra, R. Postigo, J. Franco, J. Jannin et al., The Human African Trypanosomiasis Control and Surveillance Programme of the World Health Organization 2000???2009: The Way Forward, PLoS Neglected Tropical Diseases, vol.13, issue.2, pp.1007-3042999, 2000.
DOI : 10.1371/journal.pntd.0001007.g004

J. Franco, P. Simarro, A. Diarra, and J. Jannin, Epidemiology of human African trypanosomiasis, Clinical epidemiology, vol.6, pp.257-75, 2014.

C. Ooi and P. Bastin, More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse, Frontiers in Cellular and Infection Microbiology, vol.3, issue.71, 2013.
DOI : 10.3389/fcimb.2013.00071

B. Rotureau and J. Van-den-abbeele, Through the dark continent: African trypanosome development in the tsetse fly, Frontiers in Cellular and Infection Microbiology, vol.3, issue.53, 2013.
DOI : 10.3389/fcimb.2013.00053

URL : https://hal.archives-ouvertes.fr/pasteur-01371315

D. Evans, D. Ellis, and S. Stamford, Ultrastructural studies of certain aspects of the development of Trypanosoma congolense in Glossina morsitans morsitans. The Journal of protozoology, Epub, vol.26, issue.41101, pp.557-63, 1979.

K. Matthews, The developmental cell biology of Trypanosoma brucei, Journal of Cell Science, vol.118, issue.2, pp.283-90, 2005.
DOI : 10.1242/jcs.01649

G. Langousis and K. Hill, Motility and more: the flagellum of Trypanosoma brucei, Nature Reviews Microbiology, vol.94, issue.7, pp.505-523, 2014.
DOI : 10.1242/jcs.117069

M. Oberholzer, G. Langousis, H. Nguyen, E. Saada, M. Shimogawa et al., Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei, Molecular & Cellular Proteomics, vol.10, issue.10, 2011.
DOI : 10.1074/mcp.M111.010538

M. Lopez, E. Saada, and K. Hill, Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes doi: D?NLM: PMC4279026 [Available on 07, Eukaryot Cell, vol.1415, issue.111, pp.104-116, 2015.

I. Subota, D. Julkowska, L. Vincensini, N. Reeg, J. Buisson et al., Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub- Flagellar Arginine Kinase in Trypanosomes PLOS ONE | DOI:10.1371/journal.pone localization and Dynamics, Molecular & cellular proteomics: MCP. Epub, vol.13, issue.7, pp.20151769-86, 2014.

B. Rotureau, M. Morales, P. Bastin, and G. Spath, The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development?, Cellular Microbiology, vol.48, issue.5, pp.710-718, 2009.
DOI : 10.1111/j.1462-5822.2009.01295.x

N. Heddergott, T. Kruger, S. Babu, A. Wei, E. Stellamanns et al., Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream, PLoS Pathogens, vol.67, issue.11, p.3499580, 2012.
DOI : 10.1371/journal.ppat.1003023.s015

B. Rotureau, C. Ooi, D. Huet, S. Perrot, and P. Bastin, Forward motility is essential for trypanosome infection in the tsetse fly, Cellular Microbiology, vol.41, issue.Part 21
DOI : 10.1111/cmi.12230

URL : https://hal.archives-ouvertes.fr/pasteur-01301209

F. Voncken, F. Gao, C. Wadforth, M. Harley, and C. Colasante, The Phosphoarginine Energy-Buffering System of Trypanosoma brucei Involves Multiple Arginine Kinase Isoforms with Different Subcellular Locations, PLoS ONE, vol.17, issue.6, pp.65908-3679164, 2013.
DOI : 10.1371/journal.pone.0065908.s003

W. Ellington, Evolution and Physiological Roles of Phosphagen Systems, Annual Review of Physiology, vol.63, issue.1, pp.289-325, 2001.
DOI : 10.1146/annurev.physiol.63.1.289

R. Tombes, Chapter 65 Isolation and Characterization of Sea Urchin Flagellar Creatine Kinase, Methods Cell Biol, vol.47, pp.467-72, 1995.
DOI : 10.1016/S0091-679X(08)60846-8

R. Tombes, C. Brokaw, and B. Shapiro, Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion, Biophysical Journal, vol.52, issue.1, pp.75-86, 1987.
DOI : 10.1016/S0006-3495(87)83190-9

M. Noguchi, T. Sawada, and T. Akazawa, ATP-regenerating system in the cilia of Paramecium caudatum, The Journal of experimental biology. Epub, vol.20427, issue.02, pp.1063-71, 2001.

R. Edgar and . Muscle, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1799, 2004.
DOI : 10.1093/nar/gkh340

A. Criscuolo and G. S. Bmge, Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignmentsElectronic)):210. doi: D?NLM: PMC3017758 EDAT-2010, BMC Evol Biol, vol.1010, pp.1471-2148, 2010.

N. Lartillot, T. Lepage, and S. Blanquart, PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating, Bioinformatics, vol.25, issue.17, pp.2286-2294, 2009.
DOI : 10.1093/bioinformatics/btp368

L. Ray, D. Barry, J. Easton, C. Vickerman, and K. , First tsetse fly transmission of the "AnTat" serodeme of Trypanosoma brucei, Ann Soc Belg Med Trop, vol.57, pp.4-5369, 1977.

R. Brun and M. Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication, Acta Trop. Epub, vol.36, issue.3, pp.289-92, 1979.

E. Vassella, J. Van-den-abbeele, P. Butikofer, C. Renggli, A. Furger et al., A major surface glycoprotein of trypanosoma brucei is expressed transiently during development and can be regulated posttranscriptionally by glycerol or hypoxia, Genes & Development, vol.14, issue.5, pp.615-2600, 2000.

D. Creek, B. Nijagal, D. Kim, F. Rojas, K. Matthews et al., Metabolomics Guides Rational Development of a Simplified Cell Culture Medium for Drug Screening against Trypanosoma brucei, Antimicrobial Agents and Chemotherapy, vol.57, issue.6, pp.2768-79, 2013.
DOI : 10.1128/AAC.00044-13

P. Overath, J. Czichos, and C. Haas, The effect of citrate/ cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei, European Journal of Biochemistry, vol.20, issue.1, pp.175-82, 1986.
DOI : 10.1016/0006-3002(50)90026-6

E. Wirtz and C. Clayton, Inducible gene expression in trypanosomes mediated by a prokaryotic repressor, Science, vol.268, issue.5214, pp.1179-83, 1995.
DOI : 10.1126/science.7761835

P. Bastin, Z. Bagherzadeh, K. Matthews, and K. Gull, A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Molecular and biochemical parasitology, Epub, vol.77, issue.2, pp.235-244, 1996.

M. Durand-dubief and P. Bastin, TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei, BMC Biol. Epub, vol.1, issue.2, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00108479

E. Medina-acosta and G. Cross, Rapid isolation of DNA from trypanosomatid protozoa using a simple 'mini-prep' procedure. Molecular and biochemical parasitology, Epub, vol.59, issue.206, pp.327-901, 1993.

B. Rotureau, I. Subota, and P. Bastin, Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle, Cellular Microbiology, vol.95, issue.5, pp.705-721, 2010.
DOI : 10.1111/j.1462-5822.2010.01566.x

URL : https://hal.archives-ouvertes.fr/pasteur-01371324

M. Miranda, L. Bouvier, G. Canepa, and C. Pereira, Subcellular localization of Trypanosoma cruzi arginine kinase, Parasitology, vol.135, issue.10, pp.1201-1208, 2009.
DOI : 10.1016/j.exppara.2008.04.017

C. Pereira, G. Alonso, M. Paveto, A. Iribarren, M. Cabanas et al., Trypanosoma cruzi Arginine Kinase Characterization and Cloning: A NOVEL ENERGETIC PATHWAY IN PROTOZOAN PARASITES, Journal of Biological Chemistry, vol.275, issue.2, pp.1495-50108, 2000.
DOI : 10.1074/jbc.275.2.1495

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-676, 2012.
DOI : 10.1038/nmeth.2089

L. Kohl, T. Sherwin, and K. Gull, Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle, The Journal of Eukaryotic Microbiology, vol.95, issue.2, pp.105-114, 1999.
DOI : 10.1083/jcb.104.3.439

G. Canepa, C. Carrillo, M. Miranda, M. Saye, and C. Pereira, Arginine kinase in Phytomonas, a trypanosomatid parasite of plants, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.160, issue.1, pp.40-43, 2011.
DOI : 10.1016/j.cbpb.2011.05.006

L. Godsel and D. Engman, Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism, The EMBO Journal, vol.18, issue.8, pp.261-4189, 1999.
DOI : 10.1093/emboj/18.8.2057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171290

D. Maric, B. Mcgwire, K. Buchanan, C. Olson, B. Emmer et al., Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. The Journal of biological chemistry, pp.33109-33126, 2011.

B. Emmer, C. Souther, K. Toriello, C. Olson, C. Epting et al., Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane, Journal of Cell Science, vol.122, issue.6, pp.867-74, 2009.
DOI : 10.1242/jcs.041764

J. Wingard, J. Ladner, M. Vanarotti, A. Fisher, H. Robinson et al., Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP), a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi, Journal of Biological Chemistry, vol.283, issue.34, pp.23388-96, 2008.
DOI : 10.1074/jbc.M803178200

I. Subota, B. Rotureau, T. Blisnick, S. Ngwabyt, M. Durand-dubief et al., ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation, Molecular Biology of the Cell, vol.22, issue.22, pp.4205-4224, 2011.
DOI : 10.1091/mbc.E11-06-0511

URL : https://hal.archives-ouvertes.fr/pasteur-01371322

C. Colasante, M. Ellis, T. Ruppert, and F. Voncken, Comparative proteomics of glycosomes from bloodstream form and procyclic culture formTrypanosoma brucei brucei, PROTEOMICS, vol.115, issue.1, pp.3275-93, 2006.
DOI : 10.1002/pmic.200500668

C. Pereira, G. Alonso, H. Torres, and M. Flawia, Arginine Kinase: A Common Feature for Management of Energy Reserves in African and American Flagellated Trypanosomatids, The Journal of Eukaryotic Microbiology, vol.6, issue.1, pp.82-87, 2002.
DOI : 10.1073/pnas.95.15.8449

P. Fernandez, A. Haouz, C. Pereira, C. Aguilar, and P. Alzari, The crystal structure of Trypanosoma cruzi arginine kinase, Proteins: Structure, Function, and Bioinformatics, vol.309, issue.1, pp.209-221, 2007.
DOI : 10.1002/prot.21557

L. Peacock, S. Cook, V. Ferris, M. Bailey, and W. Gibson, The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly, Parasites & Vectors, vol.5, issue.1, pp.109-3384477, 2012.
DOI : 10.1016/j.pt.2010.03.003

K. Gunasekera, D. Wuthrich, S. Braga-lagache, M. Heller, and T. Ochsenreiter, Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry, BMC Genomics, vol.13, issue.1, pp.556-3545838, 2012.
DOI : 10.1186/1471-2164-13-556

M. Urbaniak, D. Martin, M. Fau?ferguson, and M. Ferguson, Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei, pp.1535-390729

F. Bringaud, L. Riviere, V. Fau?coustou, and V. Coustou, Energy metabolism of trypanosomatids: Adaptation to available carbon sources, Molecular and Biochemical Parasitology, vol.149, issue.1, pp.166-6851
DOI : 10.1016/j.molbiopara.2006.03.017

URL : https://hal.archives-ouvertes.fr/hal-00215937

P. Overath and M. Engstler, Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system, Molecular Microbiology, vol.113, issue.3, pp.950-382
DOI : 10.1111/j.1365-2958.2004.04224.x

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, The EMBO Journal, vol.22, issue.20, pp.5336-5382, 2003.
DOI : 10.1093/emboj/cdg518

URL : https://hal.archives-ouvertes.fr/hal-00108210

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, Journal of Cell Science, vol.119, issue.16, pp.3443-55, 2006.
DOI : 10.1242/jcs.03078

URL : https://hal.archives-ouvertes.fr/hal-00108209

K. Ralston, A. Lerner, D. Diener, and K. Hill, Flagellar Motility Contributes to Cytokinesis in Trypanosoma brucei and Is Modulated by an Evolutionarily Conserved Dynein Regulatory System, Eukaryotic Cell, vol.5, issue.4, pp.696-711, 2006.
DOI : 10.1128/EC.5.4.696-711.2006

D. Baron, Z. Kabututu, and K. Hill, Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement, Journal of Cell Science, vol.120, issue.9, pp.1513-1533, 2007.
DOI : 10.1242/jcs.004846

R. Broadhead, H. Dawe, H. Farr, S. Griffiths, S. Hart et al., Flagellar motility is required for the viability of the bloodstream trypanosome, Nature, vol.323, issue.7081, pp.224-231, 2006.
DOI : 10.1038/nature04541

L. Tetley and K. Vickerman, Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat, J Cell Sci, vol.74, pp.1-19, 1985.

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypanosome motility, Nature, vol.391, issue.6667, p.548, 1998.
DOI : 10.1038/35300

N. Hutchings, J. Donelson, and K. Hill, Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes, The Journal of Cell Biology, vol.9, issue.5, pp.867-77, 2002.
DOI : 10.1016/S0166-6851(99)00002-X

E. Vassella, M. Oberle, S. Urwyler, C. Renggli, E. Studer et al., Major Surface Glycoproteins of Insect Forms of Trypanosoma brucei Are Not Essential for Cyclical Transmission by Tsetse, PLoS ONE, vol.508, issue.2, pp.4493-2637416, 2009.
DOI : 10.1371/journal.pone.0004493.s001

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, Journal of Cell Science, vol.126, issue.1, pp.327-365, 2013.
DOI : 10.1242/jcs.117069

T. Pullen, M. Ginger, S. Gaskell, and K. Gull, Protein Targeting of an Unusual, Evolutionarily Conserved Adenylate Kinase to a Eukaryotic Flagellum, Molecular Biology of the Cell, vol.15, issue.7, pp.3257-65, 2004.
DOI : 10.1091/mbc.E04-03-0217

Q. Wang, J. Pan, and W. Snell, Intraflagellar Transport Particles Participate Directly in Cilium-Generated Signaling in Chlamydomonas, Cell, vol.125, issue.3, pp.549-62, 2006.
DOI : 10.1016/j.cell.2006.02.044

B. Rotureau, T. Blisnick, I. Subota, D. Julkowska, N. Cayet et al., Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body, Journal of Cell Science, vol.127, issue.1, pp.204-219, 2014.
DOI : 10.1242/jcs.136424

URL : https://hal.archives-ouvertes.fr/pasteur-01301211

Q. Zhou, H. Hu, C. He, and Z. Li, Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei Journal of cell science, 2015.

S. Sun, C. Wang, Y. Yuan, and C. He, An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei, Journal of Cell Science, vol.126, issue.2, pp.520-551, 2013.
DOI : 10.1242/jcs.113621

Q. Zhou, B. Liu, Y. Sun, and C. He, A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei, Journal of Cell Science, vol.124, issue.22, pp.3848-58, 2011.
DOI : 10.1242/jcs.087676

J. Sunter, V. Varga, S. Dean, and K. Gull, A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes, Journal of Cell Science, vol.128, issue.8, pp.1580-94, 2015.
DOI : 10.1242/jcs.166447

S. Reddy, A. Houmeida, Y. Benyamin, and C. Roustan, Interaction in vitro of scallop muscle arginine kinase with filamentous actin, European Journal of Biochemistry, vol.1036, issue.1, pp.251-258, 1992.
DOI : 10.1146/annurev.biochem.55.1.987

H. Yanagisawa and R. Kamiya, Association between actin and light chains in Chlamydomonas flagellar inner-arm dyneins. Biochemical and biophysical research communications, Epub, vol.28810, issue.2, pp.443-450, 2001.

V. Jamonneau, S. Ravel, M. Koffi, D. Kaba, D. Zeze et al., Mixed infections of trypanosomes in tsetse and pigs and their epidemiological significance in a sleeping sickness focus of C??te d'Ivoire, Parasitology, vol.129, issue.6, pp.693-702, 2004.
DOI : 10.1017/S0031182004005876

M. Lehane, A. Msangi, C. Whitaker, and S. Lehane, Grouping of trypanosome species in mixed infections in Glossina pallidipes, Parasitology, vol.120, issue.6, pp.583-92, 2000.
DOI : 10.1017/S0031182099005983

C. Kubi, J. Van-den-abbeele, P. Dorny, M. Coosemans, T. Marcotty et al., Ability of Trypanosome-Infected Tsetse Flies (Diptera: Glossinidae) to Acquire an Infection with a Second Trypanosome Species, Journal of Medical Entomology, vol.42, issue.6, pp.1035-8000233211000017, 2005.
DOI : 10.1093/jmedent/42.6.1035