P. Brandtzaeg and M. Van-deuren, Classification and pathogenesis of meningococcal infections Methods in molecular biology, pp.21-35, 2012.

V. Pelicic, Type IV pili: e pluribus unum?, Molecular Microbiology, vol.181, issue.4, pp.827-864, 2008.
DOI : 10.1172/JCI30727

M. Virji, J. Heckels, W. Potts, C. Hart, and J. Saunders, Identification of Epitopes Recognized by Monoclonal Antibodies SM1 and SM2 Which React with All Pili of Neisseria gonorrhoeae but Which Differentiate between Two Structural Classes of Pili Expressed by Neisseria meningitidis and the Distribution of Their Encoding Sequences in the Genomes of Neisseria spp., Microbiology, vol.135, issue.12, pp.3239-51, 1989.
DOI : 10.1099/00221287-135-12-3239

C. Kahler, L. Martin, Y. Tzeng, Y. Miller, K. Sharkey et al., Polymorphisms in Pilin Glycosylation Locus of Neisseria meningitidis Expressing Class II Pili, Infection and Immunity, vol.69, issue.6, pp.3597-604, 2001.
DOI : 10.1128/IAI.69.6.3597-3604.2001

F. Aas, A. Vik, J. Vedde, M. Koomey, and W. Egge-jacobsen, Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure, Molecular Microbiology, vol.89, issue.Part 5, pp.607-631, 2007.
DOI : 10.1111/j.1365-2958.2007.05806.x

P. Power, K. Seib, and M. Jennings, Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli, Biochemical and Biophysical Research Communications, vol.347, issue.4, pp.904-912, 2006.
DOI : 10.1016/j.bbrc.2006.06.182

S. Bentley, G. Vernikos, L. Snyder, C. Churcher, C. Arrowsmith et al., Meningococcal Genetic Variation Mechanisms Viewed through Comparative Analysis of Serogroup C Strain FAM18, PLoS Genetics, vol.16, issue.2, p.1797815, 2007.
DOI : 10.1371/journal.pgen.0030023.st003

D. Dyer, W. Mckenna, J. Woods, and P. Sparling, Isolation by streptonigrin enrichment and characterization of a transferrin-specific iron uptake mutant of Neisseria meningitidis. Microbial pathogenesis, pp.351-63, 1987.

J. Gault, C. Malosse, S. Machata, C. Millien, I. Podglajen et al., pilins requires top-down mass spectrometry, PROTEOMICS, vol.18, issue.10, pp.1141-51, 2014.
DOI : 10.1002/pmic.201300394

L. Smith, N. Kelleher, C. For-top-down, and P. , Proteoform: a single term describing protein complexity, Nature Methods, vol.10, issue.3, pp.186-193, 2013.
DOI : 10.1093/nar/gkq907

C. Naessan, W. Egge-jacobsen, R. Heiniger, M. Wolfgang, F. Aas et al., Genetic and Functional Analyses of PptA, a Phospho-Form Transferase Targeting Type IV Pili in Neisseria gonorrhoeae, Journal of Bacteriology, vol.190, issue.1, pp.387-400, 2008.
DOI : 10.1128/JB.00765-07

M. Warren and M. Jennings, Identification and Characterization of pptA: a Gene Involved in the Phase-Variable Expression of Phosphorylcholine on Pili of Neisseria meningitidis, Infection and Immunity, vol.71, issue.12, pp.6892-6900, 2003.
DOI : 10.1128/IAI.71.12.6892-6898.2003

R. Viburiene, A. Vik, M. Koomey, and B. Borud, Allelic Variation in a Simple Sequence Repeat Element of Neisserial pglB2 and Its Consequences for Protein Expression and Protein Glycosylation, Journal of Bacteriology, vol.195, issue.15, pp.3476-85, 2013.
DOI : 10.1128/JB.00276-13

F. Jen, M. Warren, B. Schulz, P. Power, W. Swords et al., Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells, PLoS Pathogens, vol.67, issue.Pt 4, p.3656113
DOI : 10.1371/journal.ppat.1003377.s008

M. Jennings, F. Jen, L. Roddam, M. Apicella, and J. Edwards, Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells, Cellular Microbiology, vol.269, issue.6, pp.885-96, 2011.
DOI : 10.1111/j.1462-5822.2011.01586.x

A. Merz, M. So, and M. Sheetz, Pilus retraction powers bacterial twitching motility, Nature, vol.407, issue.6800, pp.98-102, 2000.

H. Parge, K. Forest, M. Hickey, D. Christensen, E. Getzoff et al., Structure of the fibre-forming protein pilin at 2.6 ?? resolution, Nature, vol.378, issue.6552, pp.32-40, 1995.
DOI : 10.1038/378032a0

J. Chamot-rooke, G. Mikaty, C. Malosse, M. Soyer, A. Dumont et al., Posttranslational Modification of Pili upon Cell Contact Triggers N. meningitidis Dissemination, Science, vol.331, issue.6018, pp.778-82, 2011.
DOI : 10.1126/science.1200729

URL : https://hal.archives-ouvertes.fr/hal-00904588

N. Mortezaei, B. Singh, E. Bullitt, B. Uhlin, and M. Andersson, P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens, Scientific Reports, vol.25, p.3848023, 2013.
DOI : 10.1038/srep03393

B. Borud, F. Aas, A. Vik, H. Winther-larsen, W. Egge-jacobsen et al., Genetic, Structural, and Antigenic Analyses of Glycan Diversity in the O-Linked Protein Glycosylation Systems of Human Neisseria Species, Journal of Bacteriology, vol.192, issue.11, pp.2816-2845, 2010.
DOI : 10.1128/JB.00101-10

L. Shewell, S. Ku, B. Schulz, F. Jen, T. Mubaiwa et al., Recombinant truncated AniA of pathogenic Neisseria elicits a non-native immune response and functional blocking antibodies, Biochemical and Biophysical Research Communications, vol.431, issue.2, pp.215-235, 2013.
DOI : 10.1016/j.bbrc.2012.12.132

J. Boslego, E. Tramont, R. Chung, D. Mcchesney, J. Ciak et al., Efficacy trial of a parenteral gonococcal pilus vaccine in men, Vaccine, vol.9, issue.3, pp.154-62, 1991.
DOI : 10.1016/0264-410X(91)90147-X

E. Tramont, J. Sadoff, J. Boslego, J. Ciak, D. Mcchesney et al., Gonococcal pilus vaccine. Studies of antigenicity and inhibition of attachment., Journal of Clinical Investigation, vol.68, issue.4, pp.881-889, 1981.
DOI : 10.1172/JCI110343

P. Power, L. Roddam, K. Rutter, S. Fitzpatrick, Y. Srikhanta et al., Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis, Molecular Microbiology, vol.183, issue.3, pp.833-880, 2003.
DOI : 10.1046/j.1365-2958.2003.03602.x

L. Mayer, Rates in vitro changes of gonococcal colony opacity phenotypes, Infect Immun. PMID, vol.37, issue.2, pp.481-486, 1982.

A. Richardson and I. Stojiljkovic, Mismatch repair and the regulation of phase variation in Neisseria meningitidis, Molecular Microbiology, vol.143, issue.3, pp.645-55, 2001.
DOI : 10.1046/j.1365-2958.2001.02408.x

A. Lamelas, S. Harris, K. Roltgen, J. Dangy, J. Hauser et al., Emergence of a New Epidemic Neisseria meningitidis Serogroup A Clone in the African Meningitis Belt: High-Resolution Picture of Genomic Changes That Mediate Immune Evasion, mBio, vol.5, issue.5, p.25336458, 2014.
DOI : 10.1128/mBio.01974-14

A. Vik, M. Aspholm, J. Anonsen, B. Borud, N. Roos et al., -linked glycosylation, Molecular Microbiology, vol.89, issue.6, pp.1166-78, 2012.
DOI : 10.1111/j.1365-2958.2012.08166.x

URL : https://hal.archives-ouvertes.fr/in2p3-00085063

H. Harvey, J. Kus, L. Tessier, J. Kelly, and L. Burrows, d-Arabinofuranose Biosynthetic Pathway and Its Role in Type IV Pilus Assembly, Journal of Biological Chemistry, vol.286, issue.32, pp.28128-28165, 2011.
DOI : 10.1074/jbc.M111.255794

S. Bernard, N. Simpson, O. Join-lambert, C. Federici, M. Laran-chich et al., Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization, Nature Medicine, vol.71, issue.7, pp.725-756, 2014.
DOI : 10.1038/nm.3563

S. Ke and E. Madison, Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method, Nucleic Acids Research, vol.25, issue.16, pp.3371-3373, 1997.
DOI : 10.1093/nar/25.16.3371

M. Marceau, J. Beretti, and X. Nassif, High adhesiveness of encapsulated Neisseria meningitidis to epithelial cells is associated with the formation of bundles of pili, Molecular Microbiology, vol.17, issue.5, pp.855-63, 1995.
DOI : 10.1111/j.1365-2958.1995.mmi_17050855.x

E. Eugene, I. Hoffmann, C. Pujol, P. Couraud, S. Bourdoulous et al., Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells, J Cell Sci, vol.115, pp.1231-1272, 2002.

A. Sali and T. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures Protein science: a publication of the Protein Society, pp.2507-2531, 2006.

A. Brünger, P. Adams, G. Clore, W. Delano, P. Gros et al., Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-926, 1998.
DOI : 10.1107/S0907444998003254

J. Linge, M. Williams, C. Spronk, A. Bonvin, and M. Nilges, Refinement of protein structures in explicit solvent, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.3, pp.496-506, 2003.
DOI : 10.1002/prot.10299

M. Nilges, A. Bernard, B. Bardiaux, T. Malliavin, M. Habeck et al., Accurate NMR Structures Through Minimization of an Extended Hybrid Energy, Structure, vol.16, issue.9, pp.1305-1317, 2008.
DOI : 10.1016/j.str.2008.07.008

X. Nassif, J. Lowy, P. Stenberg, O. Gaora, P. Ganji et al., Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells, Molecular Microbiology, vol.6, issue.4, pp.719-744, 1993.
DOI : 10.1084/jem.173.6.1395

M. Geoffroy, S. Floquet, A. Metais, X. Nassif, and V. Pelicic, Large-Scale Analysis of the Meningococcus Genome by Gene Disruption: Resistance to Complement-Mediated Lysis, Genome Research, vol.13, issue.3, pp.391-399, 2003.
DOI : 10.1101/gr.664303