R. Hancock and M. Scott, The role of antimicrobial peptides in animal defenses, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8856-8861, 2000.
DOI : 10.1073/pnas.97.16.8856

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopolymers, vol.39, issue.4, pp.236-248, 2002.
DOI : 10.1002/bip.10260

R. Hancock and H. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nature Biotechnology, vol.49, issue.12, pp.1551-1557, 2006.
DOI : 10.1038/nbt1267

J. Cheung and W. Hendrickson, Sensor domains of two-component regulatory systems, Current Opinion in Microbiology, vol.13, issue.2, pp.116-123, 2010.
DOI : 10.1016/j.mib.2010.01.016

M. Otto, Bacterial Sensing of Antimicrobial Peptides, Contrib Microbiol, vol.16, pp.136-149, 2009.
DOI : 10.1159/000219377

A. Peschel, How do bacteria resist human antimicrobial peptides?, Trends in Microbiology, vol.10, issue.4, pp.179-186, 2002.
DOI : 10.1016/S0966-842X(02)02333-8

S. Herbert, A. Bera, C. Nerz, D. Kraus, and A. Peschel, Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci, PLoS Pathogens, vol.137, issue.7, p.102, 2007.
DOI : 10.1371/journal.ppat.0030102.sd001

F. Neuhaus and J. Baddiley, A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.686-723, 2003.
DOI : 10.1128/MMBR.67.4.686-723.2003

C. Weidenmaier and A. Peschel, Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions, Nature Reviews Microbiology, vol.20, issue.4, pp.276-287, 2008.
DOI : 10.1038/nrmicro1861

Y. Rosenfeld, N. Papo, and Y. Shai, Endotoxin (Lipopolysaccharide) Neutralization by Innate Immunity Host-Defense Peptides, Journal of Biological Chemistry, vol.281, issue.3, pp.1636-1643, 2006.
DOI : 10.1074/jbc.M504327200

K. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.92, issue.3, pp.238-250, 2005.
DOI : 10.1038/nrmicro1098

I. Senyurek, M. Paulmann, T. Sinnberg, H. Kalbacher, and M. Deeg, Dermcidin-Derived Peptides Show a Different Mode of Action than the Cathelicidin LL-37 against Staphylococcus aureus, Antimicrobial Agents and Chemotherapy, vol.53, issue.6, pp.2499-2509, 2009.
DOI : 10.1128/AAC.01679-08

A. Peschel, M. Otto, R. Jack, H. Kalbacher, and G. Jung, Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides, Journal of Biological Chemistry, vol.274, issue.13, pp.8405-8410, 1999.
DOI : 10.1074/jbc.274.13.8405

S. Kristian, V. Datta, C. Weidenmaier, R. Kansal, and I. Fedtke, D-Alanylation of Teichoic Acids Promotes Group A Streptococcus Antimicrobial Peptide Resistance, Neutrophil Survival, and Epithelial Cell Invasion, Journal of Bacteriology, vol.187, issue.19, pp.6719-6725, 2005.
DOI : 10.1128/JB.187.19.6719-6725.2005

M. Kovacs, A. Halfmann, I. Fedtke, M. Heintz, and A. Peschel, A Functional dlt Operon, Encoding Proteins Required for Incorporation of D-Alanine in Teichoic Acids in Gram-Positive Bacteria, Confers Resistance to Cationic Antimicrobial Peptides in Streptococcus pneumoniae, Journal of Bacteriology, vol.188, issue.16, pp.5797-5805, 2006.
DOI : 10.1128/JB.00336-06

F. Fabretti, C. Theilacker, L. Baldassarri, Z. Kaczynski, and A. Kropec, Alanine Esters of Enterococcal Lipoteichoic Acid Play a Role in Biofilm Formation and Resistance to Antimicrobial Peptides, Infection and Immunity, vol.74, issue.7, pp.4164-4171, 2006.
DOI : 10.1128/IAI.00111-06

A. Peschel, C. Vuong, M. Otto, and F. Gotz, The D-Alanine Residues of Staphylococcus aureus Teichoic Acids Alter the Susceptibility to Vancomycin and the Activity of Autolytic Enzymes, Antimicrobial Agents and Chemotherapy, vol.44, issue.10, pp.2845-2847, 2000.
DOI : 10.1128/AAC.44.10.2845-2847.2000

C. Poyart, M. Lamy, C. Boumaila, F. Fiedler, and P. Trieu-cuot, Regulation of D-Alanyl-Lipoteichoic Acid Biosynthesis in Streptococcus agalactiae Involves a Novel Two-Component Regulatory System, Journal of Bacteriology, vol.183, issue.21, pp.6324-6334, 2001.
DOI : 10.1128/JB.183.21.6324-6334.2001

H. Maisey, K. Doran, and V. Nizet, Recent advances in understanding the molecular basis of group B Streptococcus virulence, Expert Reviews in Molecular Medicine, vol.67, p.27, 2008.
DOI : 10.1038/nrmicro1552

I. Sutcliffe, G. Black, and D. Harrington, Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae, Microbiology, vol.154, issue.5, pp.1354-1363, 2008.
DOI : 10.1099/mic.0.2007/014522-0

C. Poyart, E. Pellegrini, M. Marceau, M. Baptista, and F. Jaubert, Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells, Molecular Microbiology, vol.143, issue.6, pp.1615-1625, 2003.
DOI : 10.1046/j.1365-2958.2003.03655.x

N. Papo, Z. Oren, U. Pag, H. Sahl, and Y. Shai, The Consequence of Sequence Alteration of an Amphipathic alpha -Helical Antimicrobial Peptide and Its Diastereomers, Journal of Biological Chemistry, vol.277, issue.37, pp.33913-33921, 2002.
DOI : 10.1074/jbc.M204928200

Y. Rosenfeld, N. Lev, and Y. Shai, Effect of the Hydrophobicity to Net Positive Charge Ratio on Antibacterial and Anti-Endotoxin Activities of Structurally Similar Antimicrobial Peptides, Biochemistry, vol.49, issue.5, pp.853-861, 2010.
DOI : 10.1021/bi900724x

R. Bonelli, T. Schneider, H. Sahl, and I. Wiedemann, Insights into In Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies, Antimicrobial Agents and Chemotherapy, vol.50, issue.4, pp.1449-1457, 2006.
DOI : 10.1128/AAC.50.4.1449-1457.2006

G. Bierbaum and H. Sahl, Lantibiotics: Mode of Action, Biosynthesis and Bioengineering, Current Pharmaceutical Biotechnology, vol.10, issue.1, pp.2-18, 2009.
DOI : 10.2174/138920109787048616

T. Koprivnjak and A. Peschel, Bacterial resistance mechanisms against host defense peptides, Cellular and Molecular Life Sciences, vol.71, issue.13, pp.2243-2254, 2011.
DOI : 10.1007/s00018-011-0716-4

F. Michon, J. Brisson, A. Dell, D. Kasper, and H. Jennings, Multiantennary group-specific polysaccharide of group B streptococcus, Biochemistry, vol.27, issue.14, pp.5341-5351, 1988.
DOI : 10.1021/bi00414a059

F. Michon, E. Katzenellenbogen, D. Kasper, and H. Jennings, Structure of the complex group-specific polysaccharide of group B Streptococcus, Biochemistry, vol.26, issue.2, pp.476-486, 1987.
DOI : 10.1021/bi00376a020

E. Caliot, S. Dramsi, M. Chapot-chartier, P. Courtin, and S. Kulakauskas, Role of the Group B Antigen of Streptococcus agalactiae: A Peptidoglycan-Anchored Polysaccharide Involved in Cell Wall Biogenesis, PLoS Pathogens, vol.172, issue.6, p.1002756, 2012.
DOI : 10.1371/journal.ppat.1002756.s007

URL : https://hal.archives-ouvertes.fr/hal-01191122

R. Dorschner, B. Lopez-garcia, A. Peschel, D. Kraus, and K. Morikawa, The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides, The FASEB Journal, vol.20, issue.1, pp.35-42, 2006.
DOI : 10.1096/fj.05-4406com

J. Swanson and E. Gotschlich, ELECTRON MICROSCOPIC STUDIES ON STREPTOCOCCI: II. GROUP A CARBOHYDRATE, Journal of Experimental Medicine, vol.138, issue.1, pp.245-258, 1973.
DOI : 10.1084/jem.138.1.245

K. Sweers, K. Van-der-werf, and M. Bennink, Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation, Nanoscale, vol.91, issue.6, pp.2072-2077
DOI : 10.1039/c2nr12066f

K. Sweers, K. Van-der-werf, M. Bennink, and V. Subramaniam, Nanomechanical properties of ??-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM, Nanoscale Research Letters, vol.6, issue.1, p.270, 2011.
DOI : 10.1016/0021-9797(75)90018-1

P. Eaton, J. Fernandes, E. Pereira, M. Pintado, X. Malcata et al., Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus, Ultramicroscopy, vol.108, issue.10, pp.1128-1134, 2008.
DOI : 10.1016/j.ultramic.2008.04.015

H. Tuson, G. Auer, L. Renner, M. Hasebe, and C. Tropini, Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity, Molecular Microbiology, vol.99, issue.5, pp.874-91, 2012.
DOI : 10.1111/j.1365-2958.2012.08063.x

Y. Kaconis, I. Kowalski, J. Howe, A. Brauser, and W. Richter, Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides, Biophysical Journal, vol.100, issue.11, pp.2652-2661, 2011.
DOI : 10.1016/j.bpj.2011.04.041

R. Epand, P. Savage, and R. Epand, Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins), Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.10, pp.2500-2509, 2007.
DOI : 10.1016/j.bbamem.2007.05.023

D. Kraus, S. Herbert, S. Kristian, A. Khosravi, and V. Nizet, The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses, BMC Microbiology, vol.8, issue.1, p.85, 2008.
DOI : 10.1186/1471-2180-8-85

A. Peschel, R. Jack, M. Otto, L. Collins, and P. Staubitz, Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine, The Journal of Experimental Medicine, vol.175, issue.9, pp.1067-1076, 2001.
DOI : 10.1021/bi00860a005

E. Kilelee, A. Pokorny, M. Yeaman, and A. Bayer, Lysyl-Phosphatidylglycerol Attenuates Membrane Perturbation Rather than Surface Association of the Cationic Antimicrobial Peptide 6W-RP-1 in a Model Membrane System: Implications for Daptomycin Resistance, Antimicrobial Agents and Chemotherapy, vol.54, issue.10, pp.4476-4479, 2010.
DOI : 10.1128/AAC.00191-10

T. Koprivnjak, A. Peschel, M. Gelb, N. Liang, and J. Weiss, Role of Charge Properties of Bacterial Envelope in Bactericidal Action of Human Group IIA Phospholipase A2against Staphylococcus aureus, Journal of Biological Chemistry, vol.277, issue.49, pp.47636-47644, 2002.
DOI : 10.1074/jbc.M205104200

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

T. Gutberlet, J. Frank, H. Bradaczek, and W. Fischer, Effect of lipoteichoic acid on thermotropic membrane properties., Journal of Bacteriology, vol.179, issue.9, pp.2879-2883, 1997.
DOI : 10.1128/jb.179.9.2879-2883.1997

R. Doyle and R. Marquis, Elastic, flexible peptidoglycan and bacterial cell wall properties, Trends in Microbiology, vol.2, issue.2, pp.57-60, 1994.
DOI : 10.1016/0966-842X(94)90127-9

H. Hyyrylainen, M. Pietiainen, T. Lunden, A. Ekman, and M. Gardemeister, The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis, Microbiology, vol.153, issue.7, pp.2126-2136, 2007.
DOI : 10.1099/mic.0.2007/008680-0

M. Mangoni, N. Papo, D. Barra, M. Simmaco, and A. Bozzi, Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli, Biochemical Journal, vol.380, issue.3, pp.859-865, 2004.
DOI : 10.1042/bj20031975

Y. Kliger, A. Aharoni, D. Rapaport, P. Jones, and R. Blumenthal, Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion. STRUCTURE-FUNCTION STUDY, Journal of Biological Chemistry, vol.272, issue.21, pp.13496-13505, 1997.
DOI : 10.1074/jbc.272.21.13496

G. Andre, S. Kulakauskas, M. Chapot-chartier, B. Navet, and M. Deghorain, Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells, Nature Communications, vol.191, issue.3, p.27, 2010.
DOI : 10.1038/ncomms1027