M. Blaser and S. Falkow, What are the consequences of the disappearing human microbiota?, Nature Reviews Microbiology, vol.10, issue.12, pp.887-894, 2009.
DOI : 10.1038/nrmicro2245

B. Henriques-normark and S. Normark, Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host, Experimental Cell Research, vol.316, issue.8, pp.1408-1414, 2010.
DOI : 10.1016/j.yexcr.2010.03.003

J. Verani, L. Mcgee, and S. Schrag, Prevention of perinatal group B streptococcal disease?revised guidelines from CDC, MMWR Recomm Rep, vol.59, pp.1-36, 2010.

M. Thigpen, C. Whitney, N. Messonnier, E. Zell, and R. Lynfield, Bacterial Meningitis in the United States, 1998???2007, New England Journal of Medicine, vol.364, issue.21, pp.2016-2025, 1998.
DOI : 10.1056/NEJMoa1005384

C. Phares, R. Lynfield, M. Farley, J. Mohle-boetani, and L. Harrison, Epidemiology of Invasive Group B Streptococcal Disease in the United States, 1999-2005, JAMA, vol.299, issue.17, pp.2056-2065, 1999.
DOI : 10.1001/jama.299.17.2056

K. Edmond, C. Kortsalioudaki, S. Scott, S. Schrag, and A. Zaidi, Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis, The Lancet, vol.379, issue.9815, pp.547-556, 2012.
DOI : 10.1016/S0140-6736(11)61651-6

T. Mitchell, The pathogenesis of streptococcal infections: from Tooth decay to meningitis, Nature Reviews Microbiology, vol.19, issue.3, pp.219-230, 2003.
DOI : 10.1128/JB.183.19.5709-5717.2001

V. Nizet, Streptococcal ??-hemolysins: genetics and role in disease pathogenesis, Trends in Microbiology, vol.10, issue.12, pp.575-580, 2002.
DOI : 10.1016/S0966-842X(02)02473-3

G. Lindahl, M. Stalhammar-carlemalm, and T. Areschoug, Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens, Clinical Microbiology Reviews, vol.18, issue.1, pp.102-127, 2005.
DOI : 10.1128/CMR.18.1.102-127.2005

A. Nobbs, R. Lamont, and H. Jenkinson, Streptococcus Adherence and Colonization, Microbiology and Molecular Biology Reviews, vol.73, issue.3, pp.407-450, 2009.
DOI : 10.1128/MMBR.00014-09

M. Lamy, M. Zouine, J. Fert, M. Vergassola, and E. Couve, CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence, Molecular Microbiology, vol.234, issue.5, pp.1250-1268, 2004.
DOI : 10.1111/j.1365-2958.2004.04365.x

URL : https://hal.archives-ouvertes.fr/hal-00019892

S. Jiang, M. Cieslewicz, D. Kasper, and M. Wessels, Regulation of Virulence by a Two-Component System in Group B Streptococcus, Journal of Bacteriology, vol.187, issue.3, pp.1105-1113, 2005.
DOI : 10.1128/JB.187.3.1105-1113.2005

S. Jiang, N. Ishmael, J. Hotopp, M. Puliti, and L. Tissi, Variation in the Group B Streptococcus CsrRS Regulon and Effects on Pathogenicity, Journal of Bacteriology, vol.190, issue.6, pp.1956-1965, 2008.
DOI : 10.1128/JB.01677-07

R. Gao and A. Stock, Biological Insights from Structures of Two-Component Proteins, Annual Review of Microbiology, vol.63, issue.1, pp.133-154, 2009.
DOI : 10.1146/annurev.micro.091208.073214

A. Lembo, M. Gurney, K. Burnside, A. Banerjee, and M. De-los-reyes, Regulation of CovR expression in Group B Streptococcus impacts blood-brain barrier penetration, Molecular Microbiology, vol.13, issue.2, pp.431-443, 2010.
DOI : 10.1111/j.1365-2958.2010.07215.x

I. Santi, R. Grifantini, S. Jiang, C. Brettoni, and G. Grandi, CsrRS Regulates Group B Streptococcus Virulence Gene Expression in Response to Environmental pH: a New Perspective on Vaccine Development, Journal of Bacteriology, vol.191, issue.17, pp.5387-5397, 2009.
DOI : 10.1128/JB.00370-09

N. Cumley, L. Smith, and M. Anthony, The CovS/CovR Acid Response Regulator Is Required for Intracellular Survival of Group B Streptococcus in Macrophages, Infection and Immunity, vol.80, issue.5, pp.1650-1661, 2012.
DOI : 10.1128/IAI.05443-11

S. Park, S. Jiang, and M. Wessels, CsrRS and Environmental pH Regulate Group B Streptococcus Adherence to Human Epithelial Cells and Extracellular Matrix, Infection and Immunity, vol.80, issue.11, pp.3975-3984, 2012.
DOI : 10.1128/IAI.00699-12

M. Graham, L. Smoot, C. Migliaccio, K. Virtaneva, and D. Sturdevant, Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling, Proceedings of the National Academy of Sciences, vol.99, issue.21, pp.13855-13860, 2002.
DOI : 10.1073/pnas.202353699

P. Sumby, A. Whitney, E. Graviss, F. Deleo, and J. Musser, Genome-Wide Analysis of Group A Streptococci Reveals a Mutation That Modulates Global Phenotype and Disease Specificity, PLoS Pathogens, vol.100, issue.1, p.5, 2006.
DOI : 10.1371/journal.ppat.0020005.st001

R. Kansal, V. Datta, R. Aziz, N. Abdeltawab, and S. Rowe, Bacteria, The Journal of Infectious Diseases, vol.201, issue.6, pp.855-865, 2010.
DOI : 10.1086/651019

H. Tran-winkler, J. Love, I. Gryllos, and M. Wessels, Signal Transduction through CsrRS Confers an Invasive Phenotype in Group A Streptococcus, PLoS Pathogens, vol.4, issue.10, p.1002361, 2011.
DOI : 10.1371/journal.ppat.1002361.s003

J. Cole, T. Barnett, V. Nizet, and M. Walker, Molecular insight into invasive group A streptococcal disease, Nature Reviews Microbiology, vol.23, issue.10, pp.724-736, 2011.
DOI : 10.1038/nrmicro2648

G. Churchward, The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci, Molecular Microbiology, vol.281, issue.1, pp.34-41, 2007.
DOI : 10.1111/j.1365-2958.2007.05649.x

W. Lin, D. Walthers, J. Connelly, K. Burnside, and K. Jewell, Threonine phosphorylation prevents promoter DNA binding of the Group B Streptococcus response regulator CovR, Molecular Microbiology, vol.136, issue.6, pp.1477-1495, 2009.
DOI : 10.1111/j.1365-2958.2009.06616.x

A. Gusa, J. Gao, V. Stringer, G. Churchward, and J. Scott, Phosphorylation of the Group A Streptococcal CovR Response Regulator Causes Dimerization and Promoter-Specific Recruitment by RNA Polymerase, Journal of Bacteriology, vol.188, issue.13, pp.4620-4626, 2006.
DOI : 10.1128/JB.00198-06

N. Horstmann, P. Sahasrabhojane, B. Suber, M. Kumaraswami, and R. Olsen, Distinct Single Amino Acid Replacements in the Control of Virulence Regulator Protein Differentially Impact Streptococcal Pathogenesis, PLoS Pathogens, vol.94, issue.10, p.1002311, 2011.
DOI : 10.1371/journal.ppat.1002311.s006

T. Dalton and J. Scott, CovS Inactivates CovR and Is Required for Growth under Conditions of General Stress in Streptococcus pyogenes, Journal of Bacteriology, vol.186, issue.12, pp.3928-3937, 2004.
DOI : 10.1128/JB.186.12.3928-3937.2004

I. Gryllos, R. Grifantini, A. Colaprico, S. Jiang, and E. Deforce, Mg2+ signalling defines the group A streptococcal CsrRS (CovRS) regulon, Molecular Microbiology, vol.93, issue.3, pp.671-683, 2007.
DOI : 10.1111/j.1365-2958.2007.05818.x

I. Gryllos, H. Tran-winkler, M. Cheng, H. Chung, and R. Bolcome, Induction of group A Streptococcus virulence by a human antimicrobial peptide, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.16755-16760, 2008.
DOI : 10.1073/pnas.0803815105

A. Mitrophanov and E. Groisman, Signal integration in bacterial two-component regulatory systems, Genes & Development, vol.22, issue.19, pp.2601-2611, 2008.
DOI : 10.1101/gad.1700308

D. Buelow and T. Raivio, Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases, Molecular Microbiology, vol.70, issue.7, pp.547-566, 2010.
DOI : 10.1111/j.1365-2958.2009.06982.x

K. Jung, L. Fried, S. Behr, and R. Heermann, Histidine kinases and response regulators in networks, Current Opinion in Microbiology, vol.15, issue.2, pp.118-124, 2012.
DOI : 10.1016/j.mib.2011.11.009

L. Rajagopal, A. Vo, A. Silvestroni, and C. Rubens, Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae, Molecular Microbiology, vol.4, issue.10, pp.941-957, 2006.
DOI : 10.1111/j.1365-2958.1996.tb02483.x

J. Pei and N. Grishin, Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases, Trends in Biochemical Sciences, vol.26, issue.5, pp.275-277, 2001.
DOI : 10.1016/S0968-0004(01)01813-8

J. Pei, D. Mitchell, J. Dixon, and N. Grishin, Expansion of Type II CAAX Proteases Reveals Evolutionary Origin of ??-Secretase Subunit APH-1, Journal of Molecular Biology, vol.410, issue.1, pp.18-26, 2011.
DOI : 10.1016/j.jmb.2011.04.066

B. Spellerberg, B. Pohl, G. Haase, S. Martin, and J. Weber-heynemann, Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition, J Bacteriol, vol.181, pp.3212-3219, 1999.

C. Pritzlaff, J. Chang, S. Kuo, G. Tamura, and C. Rubens, Genetic basis for the beta-haemolytic/cytolytic activity of group B Streptococcus, Molecular Microbiology, vol.17, issue.2, pp.236-247, 2001.
DOI : 10.1023/A:1009810002276

G. Liu, K. Doran, T. Lawrence, N. Turkson, and M. Puliti, Sword and shield: Linked group B streptococcal ??-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense, Proceedings of the National Academy of Sciences, vol.101, issue.40, pp.14491-14496, 2004.
DOI : 10.1073/pnas.0406143101

M. Forquin, A. Tazi, M. Rosa-fraile, C. Poyart, and P. Trieu-cuot, The Putative Glycosyltransferase-Encoding Gene cylJ and the Group B Streptococcus (GBS)-Specific Gene cylK Modulate Hemolysin Production and Virulence of GBS, Infection and Immunity, vol.75, issue.4, pp.2063-2066, 2007.
DOI : 10.1128/IAI.01565-06

URL : https://hal.archives-ouvertes.fr/hal-00132024

A. Costa, R. Gupta, G. Signorino, A. Malara, and F. Cardile, Activation of the NLRP3 Inflammasome by Group B Streptococci, The Journal of Immunology, vol.188, issue.4, pp.1953-1960, 2012.
DOI : 10.4049/jimmunol.1102543

URL : https://hal.archives-ouvertes.fr/pasteur-01300173

M. De-la-rosa, M. Perez, C. Carazo, L. Pareja, and J. Peis, New Granada Medium for detection and identification of Group B Streptococci, J Clin Microbiol, vol.30, pp.1019-1021, 1992.

P. Glaser, C. Rusniok, C. Buchrieser, C. F. Frangeul, and L. , Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease, Molecular Microbiology, vol.181, issue.6, pp.1499-1513, 2002.
DOI : 10.1046/j.1365-2958.2002.03126.x

H. Tettelin, V. Masignani, M. Cieslewicz, C. Donati, and D. Medini, Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome", Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13950-13955, 2005.
DOI : 10.1073/pnas.0506758102

A. Winter-vann and P. Casey, Opinion: Post-prenylation-processing enzymes as new targets in oncogenesis, Nature Reviews Cancer, vol.9, issue.5, pp.405-412, 2005.
DOI : 10.1083/jcb.119.3.617

S. Maurer-stroh and F. Eisenhaber, Refinement and prediction of protein prenylation motifs, Genome Biology, vol.6, issue.6, p.55, 2005.
DOI : 10.1186/gb-2005-6-6-r55

L. Plummer, E. Hildebrandt, S. Porter, V. Rogers, and J. Mccracken, Mutational Analysis of the Ras Converting Enzyme Reveals a Requirement for Glutamate and Histidine Residues, Journal of Biological Chemistry, vol.281, issue.8, pp.4596-4605, 2006.
DOI : 10.1074/jbc.M506284200

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proceedings of the National Academy of Sciences, vol.95, issue.10, pp.5752-5756, 1998.
DOI : 10.1073/pnas.95.10.5752

M. Laub and M. Goulian, Specificity in Two-Component Signal Transduction Pathways, Annual Review of Genetics, vol.41, issue.1, pp.121-145, 2007.
DOI : 10.1146/annurev.genet.41.042007.170548

T. Huynh and V. Stewart, Negative control in two-component signal transduction by transmitter phosphatase activity, Molecular Microbiology, vol.97, issue.2, pp.275-286, 2011.
DOI : 10.1111/j.1365-2958.2011.07829.x

T. Huynh, C. Noriega, and V. Stewart, Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX, Proceedings of the National Academy of Sciences, vol.107, issue.49, pp.21140-21145, 2010.
DOI : 10.1073/pnas.1013081107

J. Trevino, N. Perez, E. Ramirez-pena, Z. Liu, and S. Shelburne, CovS Simultaneously Activates and Inhibits the CovR-Mediated Repression of Distinct Subsets of Group A Streptococcus Virulence Factor-Encoding Genes, Infection and Immunity, vol.77, issue.8, pp.3141-3149, 2009.
DOI : 10.1128/IAI.01560-08

V. Sugareva, R. Arlt, T. Fiedler, C. Riani, and A. Podbielski, Serotype- and strain- dependent contribution of the sensor kinase CovS of the CovRS two-component system to Streptococcus pyogenes pathogenesis, BMC Microbiology, vol.10, issue.1, p.34, 2010.
DOI : 10.1186/1471-2180-10-34

E. Matthews, M. Zoonens, and D. Engelman, Dynamic Helix Interactions in Transmembrane Signaling, Cell, vol.127, issue.3, pp.447-450, 2006.
DOI : 10.1016/j.cell.2006.10.016

M. Hulko, F. Berndt, M. Gruber, J. Linder, and V. Truffault, The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling, Cell, vol.126, issue.5, pp.929-940, 2006.
DOI : 10.1016/j.cell.2006.06.058

H. Szurmant, R. White, and J. Hoch, Sensor complexes regulating two-component signal transduction, Current Opinion in Structural Biology, vol.17, issue.6, pp.706-715, 2007.
DOI : 10.1016/j.sbi.2007.08.019

S. Goldberg, G. Clinthorne, M. Goulian, and W. Degrado, Transmembrane polar interactions are required for signaling in the Escherichia coli sensor kinase PhoQ, Proceedings of the National Academy of Sciences, vol.107, issue.18, pp.8141-8146, 2010.
DOI : 10.1073/pnas.1003166107

Y. Eguchi, J. Itou, M. Yamane, R. Demizu, and F. Yamato, B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli, Proceedings of the National Academy of Sciences, vol.104, issue.47, pp.18712-18717, 2007.
DOI : 10.1073/pnas.0705768104

A. Lippa and M. Goulian, Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide, PLoS Genetics, vol.23, issue.12, p.1000788, 2009.
DOI : 10.1371/journal.pgen.1000788.s011

H. Gerken, E. Charlson, E. Cicirelli, L. Kenney, and R. Misra, MzrA: a novel modulator of the EnvZ/OmpR two-component regulon, Molecular Microbiology, vol.70, issue.6, pp.1408-1422, 2009.
DOI : 10.1111/j.1365-2958.2009.06728.x

H. Szurmant, M. Mohan, P. Imus, and J. Hoch, YycH and YycI Interact To Regulate the Essential YycFG Two-Component System in Bacillus subtilis, Journal of Bacteriology, vol.189, issue.8, pp.3280-3289, 2007.
DOI : 10.1128/JB.01936-06

H. Szurmant, L. Bu, C. Brooks, and J. Hoch, An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins, Proceedings of the National Academy of Sciences, vol.105, issue.15, pp.5891-5896, 2008.
DOI : 10.1073/pnas.0800247105

S. Dintner, A. Staron, E. Berchtold, T. Petri, and T. Mascher, Coevolution of ABC Transporters and Two-Component Regulatory Systems as Resistance Modules against Antimicrobial Peptides in Firmicutes Bacteria, Journal of Bacteriology, vol.193, issue.15, pp.3851-3862, 2011.
DOI : 10.1128/JB.05175-11

T. Mascher, Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria, FEMS Microbiology Letters, vol.264, issue.2, pp.133-144, 2006.
DOI : 10.1111/j.1574-6968.2006.00444.x

A. Goodman, M. Merighi, M. Hyodo, I. Ventre, and A. Filloux, Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen, Genes & Development, vol.23, issue.2, pp.249-259, 2009.
DOI : 10.1101/gad.1739009

L. Rajagopal, A. Clancy, and C. Rubens, A Eukaryotic Type Serine/Threonine Kinase and Phosphatase inStreptococcus agalactiae Reversibly Phosphorylate an Inorganic Pyrophosphatase and Affect Growth, Cell Segregation, and Virulence, Journal of Biological Chemistry, vol.278, issue.16, pp.14429-14441, 2003.
DOI : 10.1074/jbc.M212747200

L. Rajagopal, A. Vo, A. Silvestroni, and C. Rubens, Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae, Molecular Microbiology, vol.20, issue.Pt 10, pp.1329-1346, 2005.
DOI : 10.1111/j.1365-2958.2005.04620.x

A. Silvestroni, K. Jewell, W. Lin, J. Connelly, and M. Ivancic, Identification of Serine/Threonine Kinase Substrates in the Human Pathogen Group B Streptococcus, Journal of Proteome Research, vol.8, issue.5, pp.2563-2574, 2009.
DOI : 10.1021/pr900069n

K. Burnside, A. Lembo, M. Harrell, M. Gurney, and L. Xue, Serine/Threonine Phosphatase Stp1 Mediates Post-transcriptional Regulation of Hemolysin, Autolysis, and Virulence of Group B Streptococcus, Journal of Biological Chemistry, vol.286, issue.51, pp.44197-44210, 2011.
DOI : 10.1074/jbc.M111.313486

K. Beilharz, L. Novakova, D. Fadda, P. Branny, and O. Massidda, Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP, Proceedings of the National Academy of Sciences, vol.109, issue.15, pp.905-913, 2012.
DOI : 10.1073/pnas.1119172109

S. Pereira, L. Goss, and J. Dworkin, Eukaryote-Like Serine/Threonine Kinases and Phosphatases in Bacteria, Microbiology and Molecular Biology Reviews, vol.75, issue.1, pp.192-212, 2011.
DOI : 10.1128/MMBR.00042-10

I. Shah, M. Laaberki, D. Popham, and J. Dworkin, A Eukaryotic-like Ser/Thr Kinase Signals Bacteria to Exit Dormancy in Response to Peptidoglycan Fragments, Cell, vol.135, issue.3, pp.486-496, 2008.
DOI : 10.1016/j.cell.2008.08.039

A. Tazi, O. Disson, S. Bellais, A. Bouaboud, and N. Dmytruk, The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates, The Journal of Experimental Medicine, vol.59, issue.11, pp.2313-2322, 2010.
DOI : 10.1111/j.1365-2958.2005.04555.x

M. Bebien, M. Hensler, S. Davanture, L. Hsu, and M. Karin, The Pore-Forming Toxin ?? hemolysin/cytolysin Triggers p38 MAPK-Dependent IL-10 Production in Macrophages and Inhibits Innate Immunity, PLoS Pathogens, vol.54, issue.7, p.1002812, 2012.
DOI : 10.1371/journal.ppat.1002812.s005

A. Reinicke, J. Hutchinson, A. Magee, P. Mastroeni, and J. Trowsdale, A Salmonella typhimurium Effector Protein SifA Is Modified by Host Cell Prenylation and S-Acylation Machinery, Journal of Biological Chemistry, vol.280, issue.15, pp.14620-14627, 2005.
DOI : 10.1074/jbc.M500076200

T. Al-quadan, C. Price, N. London, O. Schueler-furman, and Y. Abukwaik, Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: a common paradigm, Trends in Microbiology, vol.19, issue.12, pp.573-579, 2011.
DOI : 10.1016/j.tim.2011.08.003

A. Grundling, D. Missiakas, and O. Schneewind, Staphylococcus aureus Mutants with Increased Lysostaphin Resistance, Journal of Bacteriology, vol.188, issue.17, pp.6286-6297, 2006.
DOI : 10.1128/JB.00457-06

M. Frankel, B. Wojcik, A. Dedent, D. Missiakas, and O. Schneewind, ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus, Molecular Microbiology, vol.32, pp.238-252, 2010.
DOI : 10.1111/j.1365-2958.2010.07334.x

M. Chopin, A. Chopin, and E. Bidnenko, Phage abortive infection in lactococci: variations on a theme, Current Opinion in Microbiology, vol.8, issue.4, pp.473-479, 2005.
DOI : 10.1016/j.mib.2005.06.006

M. Kjos, L. Snipen, Z. Salehian, I. Nes, and D. Diep, The Abi Proteins and Their Involvement in Bacteriocin Self-Immunity, Journal of Bacteriology, vol.192, issue.8, pp.2068-2076, 2010.
DOI : 10.1128/JB.01553-09

J. Gonzalez-pastor, E. Hobbs, and R. Losick, Cannibalism by Sporulating Bacteria, Science, vol.301, issue.5632, pp.510-513, 2003.
DOI : 10.1126/science.1086462

S. Lee, D. Mitchell, A. Markley, M. Hensler, and D. Gonzalez, Discovery of a widely distributed toxin biosynthetic gene cluster, Proceedings of the National Academy of Sciences, vol.105, issue.15, pp.5879-5884, 2008.
DOI : 10.1073/pnas.0801338105

E. Molloy, P. Cotter, C. Hill, D. Mitchell, and R. Ross, Streptolysin S-like virulence factors: the continuing sagA, Nature Reviews Microbiology, vol.6, issue.9, pp.670-681, 2011.
DOI : 10.1038/nrmicro2624

V. Nizet, B. Beall, D. Bast, V. Datta, and L. Kilburn, Genetic Locus for Streptolysin S Production by Group A Streptococcus, Infection and Immunity, vol.68, issue.7, pp.4245-4254, 2000.
DOI : 10.1128/IAI.68.7.4245-4254.2000

V. Datta, S. Myskowski, L. Kwinn, D. Chiem, and N. Varki, Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection, Molecular Microbiology, vol.17, issue.Suppl. 2, pp.681-695, 2005.
DOI : 10.1111/j.1365-2958.2005.04583.x

K. Heckman and L. Pease, Gene splicing and mutagenesis by PCR-driven overlap extension, Nature Protocols, vol.2, issue.4, pp.924-932, 2007.
DOI : 10.1038/nprot.2007.132

I. Biswas, A. Gruss, S. Ehrlich, and E. Maguin, High-efficiency gene inactivation and replacement system for gram-positive bacteria., Journal of Bacteriology, vol.175, issue.11, pp.3628-3635, 1993.
DOI : 10.1128/jb.175.11.3628-3635.1993

L. Lalioui, E. Pellegrini, S. Dramsi, M. Baptista, and N. Bourgeois, The SrtA Sortase of Streptococcus agalactiae Is Required for Cell Wall Anchoring of Proteins Containing the LPXTG Motif, for Adhesion to Epithelial Cells, and for Colonization of the Mouse Intestine, Infection and Immunity, vol.73, issue.6, pp.3342-3350, 2005.
DOI : 10.1128/IAI.73.6.3342-3350.2005

URL : https://hal.archives-ouvertes.fr/hal-00019655