C. H. Bassing, W. Swat, and F. W. Alt, The Mechanism and Regulation of Chromosomal V(D)J Recombination, Cell, vol.109, issue.2, pp.45-55, 2002.
DOI : 10.1016/S0092-8674(02)00675-X

D. G. Schatz and P. C. Swanson, V(D)J Recombination: Mechanisms of Initiation, Annual Review of Genetics, vol.45, issue.1, pp.167-202, 2011.
DOI : 10.1146/annurev-genet-110410-132552

L. Deriano and D. B. Roth, Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage, Annual Review of Genetics, vol.47, issue.1, pp.433-455, 2013.
DOI : 10.1146/annurev-genet-110711-155540

URL : https://hal.archives-ouvertes.fr/pasteur-01471700

P. Revy, D. Buck, F. Le-deist, and J. P. De-villartay, The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models, Adv. Immunol, vol.87, pp.237-295, 2005.
DOI : 10.1016/S0065-2776(05)87007-5

S. Rooney, J. Chaudhuri, and F. W. Alt, The role of the non-homologous end-joining pathway in lymphocyte development, Immunological Reviews, vol.14, issue.1, pp.115-131, 2004.
DOI : 10.1016/S0960-9822(01)00048-3

B. A. Helmink and B. P. Sleckman, The Response to and Repair of RAG-Mediated DNA Double-Strand Breaks, Annual Review of Immunology, vol.30, issue.1, pp.175-202, 2012.
DOI : 10.1146/annurev-immunol-030409-101320

A. L. Bredemeyer, ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, Nature, vol.194, issue.7101, pp.466-470, 2006.
DOI : 10.1038/nature04866

V. Kumar, F. W. Alt, and V. Oksenych, Functional overlaps between XLF and the ATM-dependent DNA double strand break response, DNA Repair, vol.16, pp.11-22, 2014.
DOI : 10.1016/j.dnarep.2014.01.010

D. Buck, Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly, Cell, vol.124, issue.2, pp.260-262, 2006.
DOI : 10.1016/j.cell.2005.12.030

P. Ahnesorg, P. Smith, and S. P. Jackson, XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining, Cell, vol.124, issue.2, pp.301-313, 2006.
DOI : 10.1016/j.cell.2005.12.031

Y. Li, Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ, The EMBO Journal, vol.40, issue.1, pp.290-300, 2008.
DOI : 10.1038/sj.emboj.7601942

S. N. Andres, M. Modesti, C. J. Tsai, G. Chu, and M. S. Junop, Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining, Molecular Cell, vol.28, issue.6, pp.1093-1101, 2007.
DOI : 10.1016/j.molcel.2007.10.024

I. Callebaut, Cernunnos Interacts with the XRCC4{middle dot}DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1, Journal of Biological Chemistry, vol.281, issue.20, pp.13857-13860, 2006.
DOI : 10.1074/jbc.C500473200

D. A. Reid, Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair, Proc. Natl Acad. Sci. USA, pp.2575-2584, 2015.
DOI : 10.1073/pnas.1420115112

V. Ropars, Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining, Proceedings of the National Academy of Sciences, vol.108, issue.31
DOI : 10.1073/pnas.1100758108

URL : https://hal.archives-ouvertes.fr/hal-00613194

M. Hammel, XRCC4 Protein Interactions with XRCC4-like Factor (XLF) Create an Extended Grooved Scaffold for DNA Ligation and Double Strand Break Repair, Journal of Biological Chemistry, vol.286, issue.37, pp.32638-32650, 2011.
DOI : 10.1074/jbc.M111.272641

E. Riballo, XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation, Nucleic Acids Research, vol.37, issue.2, pp.482-492, 2009.
DOI : 10.1093/nar/gkn957

C. J. Tsai, S. A. Kim, and G. Chu, Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends, Proc. Natl Acad. Sci. USA, pp.7851-7856, 2007.
DOI : 10.1073/pnas.0702620104

G. Vera, Cernunnos Deficiency Reduces Thymocyte Life Span and Alters the T Cell Repertoire in Mice and Humans, Molecular and Cellular Biology, vol.33, issue.4, pp.701-711, 2012.
DOI : 10.1128/MCB.01057-12

G. Li, Lymphocyte-Specific Compensation for XLF/Cernunnos End-Joining Functions in V(D)J Recombination, Molecular Cell, vol.31, issue.5, pp.631-640, 2008.
DOI : 10.1016/j.molcel.2008.07.017

S. Zha, ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks, Nature, vol.296, issue.7329, pp.250-254, 2011.
DOI : 10.1038/nature09604

D. D. Dudley, J. Chaudhuri, C. H. Bassing, and F. W. Alt, Mechanism and Control of V(D)J Recombination versus Class Switch Recombination: Similarities and Differences, Adv. Immunol, vol.86, pp.43-112, 2005.
DOI : 10.1016/S0065-2776(04)86002-4

D. B. Roth, Restraining the V(D)J recombinase, Nature Reviews Immunology, vol.3, issue.8, pp.656-666, 2003.
DOI : 10.1038/nri1152

C. L. Tsai, A. H. Drejer, and D. G. Schatz, Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination, Genes & Development, vol.16, issue.15, pp.1934-1949, 2002.
DOI : 10.1101/gad.984502

L. E. Huye, M. M. Purugganan, M. M. Jiang, and D. B. Roth, Mutational Analysis of All Conserved Basic Amino Acids in RAG-1 Reveals Catalytic, Step Arrest, and Joining-Deficient Mutants in the V(D)J Recombinase, Molecular and Cellular Biology, vol.22, issue.10, pp.3460-3473, 2002.
DOI : 10.1128/MCB.22.10.3460-3473.2002

Y. Schultz, H. Landree, M. A. Qiu, J. X. Kale, S. B. Roth et al., Joining-Deficient RAG1 Mutants Block V(D)J Recombination In Vivo and Hairpin Opening In Vitro, Molecular Cell, vol.7, issue.1, pp.65-75, 2001.
DOI : 10.1016/S1097-2765(01)00155-1

J. X. Qiu, S. B. Kale, Y. Schultz, H. Roth, and D. B. , Separation-of-Function Mutants Reveal Critical Roles for RAG2 in Both the Cleavage and Joining Steps of V(D)J Recombination, Molecular Cell, vol.7, issue.1, pp.77-87, 2001.
DOI : 10.1016/S1097-2765(01)00156-3

D. B. Roth, V(D)J Recombination: Mechanism, Errors, and Fidelity, Microbiology Spectrum, vol.2, issue.6, pp.3-0041, 2014.
DOI : 10.1128/microbiolspec.MDNA3-0041-2014

M. A. Coussens, RAG2???s Acidic Hinge Restricts Repair-Pathway Choice and Promotes Genomic Stability, Cell Reports, vol.4, issue.5, pp.870-878, 2013.
DOI : 10.1016/j.celrep.2013.07.041

URL : https://hal.archives-ouvertes.fr/pasteur-01471703

L. Deriano, The RAG2 C terminus suppresses genomic instability and lymphomagenesis, Nature, vol.101, issue.7336, pp.119-123, 2011.
DOI : 10.1038/nature09755

URL : https://hal.archives-ouvertes.fr/pasteur-01471708

B. Corneo, Rag mutations reveal robust alternative end joining, Nature, vol.55, issue.7161, pp.483-486, 2007.
DOI : 10.1038/nature06168

G. S. Lee, M. B. Neiditch, S. S. Salus, and D. B. Roth, RAG Proteins Shepherd Double-Strand Breaks to a Specific Pathway, Suppressing Error-Prone Repair, but RAG Nicking Initiates Homologous Recombination, Cell, vol.117, issue.2, pp.171-184, 2004.
DOI : 10.1016/S0092-8674(04)00301-0

V. Gigi, RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of 'alternative NHEJ', Nucleic Acids Research, vol.42, issue.10, pp.6352-6364, 2014.
DOI : 10.1093/nar/gku295

URL : https://hal.archives-ouvertes.fr/pasteur-01471690

H. E. Liang, The ???Dispensable??? Portion of RAG2 Is Necessary for Efficient V-to-DJ Rearrangement during B and T Cell Development, Immunity, vol.17, issue.5, pp.639-651, 2002.
DOI : 10.1016/S1074-7613(02)00448-X

J. M. Jones and C. Simkus, The roles of the RAG1 and RAG2 ???non-core??? regions in V(D)J recombination and lymphocyte development, Archivum Immunologiae et Therapiae Experimentalis, vol.102, issue.2, pp.105-116, 2009.
DOI : 10.1007/s00005-009-0011-3

J. D. Curry and M. S. Schlissel, RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination, Nucleic Acids Research, vol.36, issue.18, pp.5750-5762, 2008.
DOI : 10.1093/nar/gkn553

S. R. Talukder, D. D. Dudley, F. W. Alt, Y. Takahama, and Y. Akamatsu, Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice, Nucleic Acids Research, vol.32, issue.15, pp.4539-4549, 2004.
DOI : 10.1093/nar/gkh778

Y. Akamatsu, Deletion of the RAG2 C terminus leads to impaired lymphoid development in mice, Proc. Natl Acad. Sci. USA, pp.1209-1214, 2003.
DOI : 10.1073/pnas.0237043100

J. A. Sekiguchi, S. Whitlow, and F. W. Alt, Increased Accumulation of Hybrid V(D)J Joins in Cells Expressing Truncated versus Full-Length RAGs, Molecular Cell, vol.8, issue.6, pp.1383-1390, 2001.
DOI : 10.1016/S1097-2765(01)00423-3

S. Zha, rearrangement and gene amplification, The Journal of Experimental Medicine, vol.96, issue.7, pp.1369-1380, 2010.
DOI : 10.1073/pnas.79.9.3015

C. Barlow, Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia, Cell, vol.86, issue.1, pp.159-171, 1996.
DOI : 10.1016/S0092-8674(00)80086-0

S. Rooney, Leaky Scid Phenotype Associated with Defective V(D)J Coding End Processing in Artemis-Deficient Mice, Molecular Cell, vol.10, issue.6, pp.1379-1390, 2002.
DOI : 10.1016/S1097-2765(02)00755-4

Y. Gu, Growth Retardation and Leaky SCID Phenotype of Ku70-Deficient Mice, Immunity, vol.7, issue.5, pp.653-665, 1997.
DOI : 10.1016/S1074-7613(00)80386-6

S. A. Muljo and M. S. Schlissel, A small molecule Abl kinase inhibitor induces differentiation of Abelson virus???transformed pre-B cell lines, Nature Immunology, vol.4, issue.1, pp.31-37, 2003.
DOI : 10.1038/ni870

G. E. Taccioli, Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination, Science, vol.265, issue.5177, pp.1442-1445, 1994.
DOI : 10.1126/science.8073286

S. Panier and S. J. Boulton, Double-strand break repair: 53BP1 comes into focus, Nature Reviews Molecular Cell Biology, vol.116, issue.1, pp.7-18, 2014.
DOI : 10.1083/jcb.201302145

H. T. Chen, Response to RAG-Mediated V(D)J Cleavage by NBS1 and gamma-H2AX, Science, vol.290, issue.5498, pp.1962-1965, 2000.
DOI : 10.1126/science.290.5498.1962

Y. Shinkai, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell, vol.68, issue.5, pp.855-867, 1992.
DOI : 10.1016/0092-8674(92)90029-C

B. A. Helmink, H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes, Nature, vol.37, issue.7329, pp.245-249, 2011.
DOI : 10.1038/nature09585

M. Jankovic, A. Nussenzweig, and M. C. Nussenzweig, Antigen receptor diversification and chromosome translocations, Nature Immunology, vol.201, issue.8, pp.801-808, 2007.
DOI : 10.1038/ni1498

C. Zhu, Unrepaired DNA Breaks in p53-Deficient Cells Lead to Oncogenic Gene Amplification Subsequent to Translocations, Cell, vol.109, issue.7, pp.811-821, 2002.
DOI : 10.1016/S0092-8674(02)00770-5

S. Roy, XRCC4's interaction with XLF is required for coding (but not signal) end joining, Nucleic Acids Research, vol.40, issue.4, pp.1684-1694, 2012.
DOI : 10.1093/nar/gkr1315

S. Zha, F. W. Alt, H. L. Cheng, J. W. Brush, and G. Li, Defective DNA repair and increased genomic instability in Cernunnos-XLF-deficient murine ES cells, Proc. Natl Acad. Sci. USA, pp.4518-4523, 2007.
DOI : 10.1073/pnas.0611734104

J. Gu, H. Lu, A. G. Tsai, K. Schwarz, and M. R. Lieber, Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence, Nucleic Acids Research, vol.35, issue.17, pp.5755-5762, 2007.
DOI : 10.1093/nar/gkm579

A. T. Tubbs, KAP-1 Promotes Resection of Broken DNA Ends Not Protected by ??-H2AX and 53BP1 in G1-Phase Lymphocytes, Molecular and Cellular Biology, vol.34, issue.15, pp.2811-2821, 2014.
DOI : 10.1128/MCB.00441-14

E. J. Gapud, B. S. Lee, G. K. Mahowald, C. H. Bassing, and B. P. Sleckman, Repair of Chromosomal RAG-Mediated DNA Breaks by Mutant RAG Proteins Lacking Phosphatidylinositol 3-Like Kinase Consensus Phosphorylation Sites, The Journal of Immunology, vol.187, issue.4, pp.1826-1834, 2011.
DOI : 10.4049/jimmunol.1101388

S. Matsuoka, ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage, Science, vol.316, issue.5828, pp.1160-1166, 2007.
DOI : 10.1126/science.1140321

T. Jacks, Tumor spectrum analysis in p53-mutant mice, Current Biology, vol.4, issue.1, pp.1-7, 1994.
DOI : 10.1016/S0960-9822(00)00002-6

A. Nussenzweig, Requirement for Ku80 in growth and immunoglobulin V(D)J recombination, Nature, vol.382, issue.6591, pp.551-555, 1996.
DOI : 10.1038/382551a0

N. Rosenberg, D. Baltimore, and C. D. Scher, In vitro transformation of lymphoid cells by Abelson murine leukemia virus, Proc. Natl Acad. Sci. USA 72, pp.1932-1936, 1975.

K. Kollmann, c-JUN promotes BCR-ABL-induced lymphoid leukemia by inhibiting methylation of the 5' region of Cdk6, Blood, vol.117, issue.15, pp.4065-4075, 2011.
DOI : 10.1182/blood-2010-07-299644

B. S. Lee, Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination, Molecular and Cellular Biology, vol.33, issue.18, pp.3568-3579, 2013.
DOI : 10.1128/MCB.00308-13

J. Chaumeil, M. Micsinai, and J. A. Skok, Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization, Journal of Visualized Experiments, vol.3, issue.72, p.50087, 2013.
DOI : 10.3791/50087

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

B. Zeitouni, SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data, Bioinformatics, vol.26, issue.15, pp.1895-1896, 2010.
DOI : 10.1093/bioinformatics/btq293

URL : https://hal.archives-ouvertes.fr/inserm-00508372

M. Krzywinski, Circos: An information aesthetic for comparative genomics, Genome Research, vol.19, issue.9, pp.1639-1645, 2009.
DOI : 10.1101/gr.092759.109

J. Schroder, Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads, Bioinformatics, vol.30, issue.8, pp.1064-1072, 2014.
DOI : 10.1093/bioinformatics/btt767

T. Rausch, DELLY: structural variant discovery by integrated paired-end and split-read analysis, Bioinformatics, vol.28, issue.18, pp.333-339, 2012.
DOI : 10.1093/bioinformatics/bts378

V. Boeva, Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data, Bioinformatics, vol.28, issue.3, pp.423-425, 2012.
DOI : 10.1093/bioinformatics/btr670