E. Caron, A. Self, and A. Hall, The GTPase Rap1 controls functional activation of macrophage integrin ??M??2 by LPS and other inflammatory mediators, Current Biology, vol.10, issue.16, pp.974-982, 2000.
DOI : 10.1016/S0960-9822(00)00641-2

A. Dupuy and E. Caron, Integrin-dependent phagocytosis - spreading from microadhesion to new concepts, Journal of Cell Science, vol.121, issue.11, pp.1773-83, 2008.
DOI : 10.1242/jcs.018036

S. Liu, D. Calderwood, and M. Ginsberg, Integrin cytoplasmic domain-binding proteins, J Cell Sci, vol.113, pp.3563-71, 2000.

Y. Shi, Y. Tohyama, T. Kadono, J. He, S. Miah et al., Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis, Blood, vol.107, issue.11, pp.4554-62, 2006.
DOI : 10.1182/blood-2005-09-3616

V. Jaumouille, Y. Farkash, K. Jaqaman, R. Das, C. Lowell et al., Actin Cytoskeleton Reorganization by Syk Regulates Fc?? Receptor Responsiveness by Increasing Its Lateral Mobility and Clustering, Developmental Cell, vol.29, issue.5, pp.534-580, 2014.
DOI : 10.1016/j.devcel.2014.04.031

P. Van-der-merwe and O. Dushek, Mechanisms for T cell receptor triggering, Nature Reviews Immunology, vol.104, issue.1, pp.47-55, 2011.
DOI : 10.1038/nri2887

A. Van-der-merwe, P. Davis, S. Shaw, A. Dustin, and M. , Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition, Seminars in Immunology, vol.12, issue.1, pp.5-21, 2000.
DOI : 10.1006/smim.2000.0203

S. Yamauchi, K. Kawauchi, and Y. Sawada, Myosin II-dependent exclusion of CD45 from the site of Fc?? receptor activation during phagocytosis, FEBS Letters, vol.184, issue.19, pp.3229-3264, 2012.
DOI : 10.1016/j.febslet.2012.06.041

J. Zhu, T. Brdicka, T. Katsumoto, J. Lin, and A. Weiss, Structurally Distinct Phosphatases CD45 and CD148 Both Regulate B Cell and Macrophage Immunoreceptor Signaling, Immunity, vol.28, issue.2, pp.183-96, 2008.
DOI : 10.1016/j.immuni.2007.11.024

G. Campi, R. Varma, and M. Dustin, Actin and agonist MHC???peptide complex???dependent T cell receptor microclusters as scaffolds for signaling, The Journal of Experimental Medicine, vol.114, issue.8, pp.1031-1037, 2005.
DOI : 10.1038/nature03391

T. Yokosuka and T. Saito, The Immunological Synapse, TCR Microclusters, and T Cell Activation, Curr Top Microbiol Immunol, vol.340, pp.81-107, 2010.
DOI : 10.1007/978-3-642-03858-7_5

S. Bunnell, D. Hong, J. Kardon, T. Yamazaki, C. Mcglade et al., T cell receptor ligation induces the formation of dynamically regulated signaling assemblies, The Journal of Cell Biology, vol.115, issue.7, pp.1263-75, 2002.
DOI : 10.1016/S1074-7613(00)80606-8

K. Lee, A. Dinner, C. Tu, G. Campi, S. Raychaudhuri et al., The Immunological Synapse Balances T Cell Receptor Signaling and Degradation, Science, vol.302, issue.5648, pp.1218-1240, 2003.
DOI : 10.1126/science.1086507

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. Dustin, T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster, Immunity, vol.25, issue.1, pp.117-144, 2006.
DOI : 10.1016/j.immuni.2006.04.010

K. Mossman, G. Campi, J. Groves, and M. Dustin, Altered TCR Signaling from Geometrically Repatterned Immunological Synapses, Science, vol.310, issue.5751, pp.3101191-3101194, 2005.
DOI : 10.1126/science.1119238

F. Niedergang, A. Dautry-varsat, and A. Alcover, Peptide antigen or superantigen-induced down-regulation of TCRs involves both stimulated and unstimulated receptors, J Immunol, vol.159, pp.1703-1713, 1997.

D. Penna, S. Muller, F. Martinon, S. Demotz, M. Iwashima et al., Degradation of ZAP-70 following antigenic stimulation in human T lymphocytes: role of calpain proteolytic pathway, J Immunol, vol.163, issue.1, pp.50-56, 1999.

L. Balagopalan, B. Ashwell, K. Bernot, I. Akpan, N. Quasba et al., Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation, Proceedings of the National Academy of Sciences, vol.108, issue.7, pp.2885-90, 2011.
DOI : 10.1073/pnas.1007098108

R. Lasserre, C. Cuche, R. Blecher-gonen, E. Libman, E. Biquand et al., Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation, The Journal of Cell Biology, vol.195, issue.5, pp.839-53, 2011.
DOI : 10.1038/ni1272

URL : https://hal.archives-ouvertes.fr/pasteur-00646203

K. Choudhuri, J. Llodra, E. Roth, J. Tsai, S. Gordo et al., Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse, Nature, vol.14, issue.7490, pp.118-2310, 1038.
DOI : 10.1038/nature12951

P. Rougerie and J. Delon, Rho GTPases: Masters of T lymphocyte migration and activation, Immunology Letters, vol.142, issue.1-2, pp.1-13, 2012.
DOI : 10.1016/j.imlet.2011.12.003

I. Hornstein, A. Alcover, and S. Katzav, Vav proteins, masters of the world of cytoskeleton organization, Cellular Signalling, vol.16, issue.1, pp.1-1110, 2004.
DOI : 10.1016/S0898-6568(03)00110-4

URL : https://hal.archives-ouvertes.fr/hal-00137584

J. Patel, A. Hall, and E. Caron, Vav Regulates Activation of Rac but Not Cdc42 during Fcgamma R-mediated Phagocytosis, Molecular Biology of the Cell, vol.13, issue.4, pp.1215-1241, 2002.
DOI : 10.1091/mbc.02-01-0002

K. Dobbs, D. Conde, C. Zhang, S. Parolini, S. et al., Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections, New England Journal of Medicine, vol.372, issue.25, pp.2409-2431, 2015.
DOI : 10.1056/NEJMoa1413462

S. Aydin, S. Kilic, C. Aytekin, A. Kumar, O. Porras et al., DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options - a Review of 136 Patients, Journal of Clinical Immunology, vol.13, issue.6, pp.189-98, 2015.
DOI : 10.1007/s10875-014-0126-0

J. Cote and K. Vuori, GEF what? Dock180 and related proteins help Rac to polarize cells in new ways, Trends in Cell Biology, vol.17, issue.8, pp.383-93, 2007.
DOI : 10.1016/j.tcb.2007.05.001

E. Caron and A. Hall, Identification of Two Distinct Mechanisms of Phagocytosis Controlled by Different Rho GTPases, Science, vol.282, issue.5394, pp.1717-1738, 1998.
DOI : 10.1126/science.282.5394.1717

G. Tzircotis, V. Braga, and E. Caron, RhoG is required for both Fc??R- and CR3-mediated phagocytosis, Journal of Cell Science, vol.124, issue.17, pp.2897-902, 2011.
DOI : 10.1242/jcs.084269

M. Nakaya, M. Tanaka, Y. Okabe, R. Hanayama, and S. Nagata, Opposite Effects of Rho Family GTPases on Engulfment of Apoptotic Cells by Macrophages, Journal of Biological Chemistry, vol.281, issue.13, pp.8836-8878, 2006.
DOI : 10.1074/jbc.M510972200

A. Hoppe and J. Swanson, Cdc42, Rac1, and Rac2 Display Distinct Patterns of Activation during Phagocytosis, Molecular Biology of the Cell, vol.15, issue.8, pp.3509-3528, 2004.
DOI : 10.1091/mbc.E03-11-0847

E. Colucci-guyon, F. Niedergang, B. Wallar, J. Peng, A. Alberts et al., A Role for Mammalian Diaphanous-Related Formins in Complement Receptor (CR3)-Mediated Phagocytosis in Macrophages, Current Biology, vol.15, issue.22, pp.2007-2019, 2005.
DOI : 10.1016/j.cub.2005.09.051

D. Cox, P. Chang, Q. Zhang, P. Reddy, G. Bokoch et al., Requirements for Both Rac1 and Cdc42 in Membrane Ruffling and Phagocytosis in Leukocytes, Journal of Experimental Medicine, vol.87, issue.3, pp.1487-94, 1997.
DOI : 10.1016/S0092-8674(00)81371-9

I. Olazabal, E. Caron, R. May, K. Schilling, D. Knecht et al., Rho-Kinase and Myosin-II Control Phagocytic Cup Formation during CR, but Not Fc??R, Phagocytosis, Current Biology, vol.12, issue.16, pp.1413-1421, 2002.
DOI : 10.1016/S0960-9822(02)01069-2

M. Binker, D. Zhao, S. Pang, and R. Harrison, Cytoplasmic Linker Protein-170 Enhances Spreading and Phagocytosis in Activated Macrophages by Stabilizing Microtubules, The Journal of Immunology, vol.179, issue.6, pp.3780-91, 2007.
DOI : 10.4049/jimmunol.179.6.3780

E. Lewkowicz, F. Herit, L. Clainche, C. Bourdoncle, P. Perez et al., The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis, The Journal of Cell Biology, vol.94, issue.7, pp.1287-98, 2008.
DOI : 10.1038/ncb1160

S. Kumari, D. Depoil, R. Martinelli, E. Judokusumo, G. Carmona et al., Actin foci facilitate activation of the phospholipase C-gamma in primary T lymphocytes via the WASP pathway, Elife, 2015.

J. Cannon and J. Burkhardt, Differential Roles for Wiskott-Aldrich Syndrome Protein in Immune Synapse Formation and IL-2 Production, The Journal of Immunology, vol.173, issue.3, pp.1658-62, 2004.
DOI : 10.4049/jimmunol.173.3.1658

J. Cannon, C. Labno, G. Bosco, A. Seth, M. Mcgavin et al., WASP Recruitment to the T Cell:APC Contact Site Occurs Independently of Cdc42 Activation, Immunity, vol.15, issue.2, pp.249-59, 2001.
DOI : 10.1016/S1074-7613(01)00178-9

T. Gomez, K. Kumar, R. Medeiros, Y. Shimizu, P. Leibson et al., Formins Regulate the Actin-Related Protein 2/3 Complex-Independent Polarization of the Centrosome to the Immunological Synapse, Immunity, vol.26, issue.2, pp.177-90, 2007.
DOI : 10.1016/j.immuni.2007.01.008

T. Gomez, S. Mccarney, E. Carrizosa, C. Labno, E. Comiskey et al., HS1 Functions as an Essential Actin-Regulatory Adaptor Protein at the Immune Synapse, Immunity, vol.24, issue.6, pp.741-52, 2006.
DOI : 10.1016/j.immuni.2006.03.022

J. Nolz, T. Gomez, P. Zhu, S. Li, R. Medeiros et al., The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation, Current Biology, vol.16, issue.1, pp.24-34, 2006.
DOI : 10.1016/j.cub.2005.11.036

S. Valitutti, M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia, Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton, Journal of Experimental Medicine, vol.181, issue.2, pp.577-84, 1995.
DOI : 10.1084/jem.181.2.577

B. Burbach, R. Medeiros, K. Mueller, and Y. Shimizu, T-cell receptor signaling to integrins, Immunological Reviews, vol.159, issue.1, pp.65-81, 2007.
DOI : 10.1073/pnas.96.14.8120

A. Babich and J. Burkhardt, Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation, Immunological Reviews, vol.38, issue.1, pp.80-94, 2013.
DOI : 10.1111/imr.12123

R. Lasserre and A. Alcover, Cytoskeletal cross-talk in the control of T cell antigen receptor signaling, FEBS Letters, vol.1143, issue.24, pp.4845-50, 2010.
DOI : 10.1016/j.febslet.2010.09.001

URL : https://hal.archives-ouvertes.fr/pasteur-00718645

K. Nguyen, N. Sylvain, and S. Bunnell, T Cell Costimulation via the Integrin VLA-4 Inhibits the Actin-Dependent Centralization of Signaling Microclusters Containing the Adaptor SLP-76, Immunity, vol.28, issue.6, pp.810-831, 2008.
DOI : 10.1016/j.immuni.2008.04.019

E. Allenspach, P. Cullinan, J. Tong, Q. Tang, A. Tesciuba et al., ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse, Immunity, vol.15, issue.5, pp.739-50, 2001.
DOI : 10.1016/S1074-7613(01)00224-2

J. Tong, E. Allenspach, S. Takahashi, P. Mody, C. Park et al., CD43 Regulation of T Cell Activation Is Not through Steric Inhibition of T Cell???APC Interactions but through an Intracellular Mechanism, The Journal of Experimental Medicine, vol.140, issue.9, pp.1277-83, 2004.
DOI : 10.1084/jem.192.2.183

J. Delon, K. Kaibuchi, and R. Germain, Exclusion of CD43 from the Immunological Synapse Is Mediated by Phosphorylation-Regulated Relocation of the Cytoskeletal Adaptor Moesin, Immunity, vol.15, issue.5, pp.691-701, 2001.
DOI : 10.1016/S1074-7613(01)00231-X

A. Roumier, J. Olivo-marin, M. Arpin, F. Michel, M. Martin et al., The Membrane-Microfilament Linker Ezrin Is Involved in the Formation of the Immunological Synapse and in T Cell Activation, Immunity, vol.15, issue.5, pp.715-743, 2001.
DOI : 10.1016/S1074-7613(01)00225-4

URL : https://hal.archives-ouvertes.fr/hal-00161327

S. Faure, L. Salazar-fontana, M. Semichon, V. Tybulewicz, G. Bismuth et al., ERM proteins regulate cytoskeleton relaxation promoting T cell???APC conjugation, Nature Immunology, vol.7, issue.3, pp.272-281, 1039.
DOI : 10.1038/ni1039

M. Shaffer, R. Dupree, P. Zhu, I. Saotome, R. Schmidt et al., Ezrin and Moesin Function Together to Promote T Cell Activation, The Journal of Immunology, vol.182, issue.2, pp.1021-1053, 2009.
DOI : 10.4049/jimmunol.182.2.1021

R. Lasserre, S. Charrin, C. Cuche, A. Danckaert, M. Thoulouze et al., Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse, The EMBO Journal, vol.161, issue.14, pp.2301-2315, 2010.
DOI : 10.1038/ni1272

URL : https://hal.archives-ouvertes.fr/pasteur-00593159

J. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.17, issue.7110, pp.462-467, 2006.
DOI : 10.1038/nature05071

A. Kupfer, G. Dennert, and S. Singer, Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets., Proceedings of the National Academy of Sciences, vol.80, issue.23, pp.7224-7232, 1983.
DOI : 10.1073/pnas.80.23.7224

B. Lowin-kropf, V. Shapiro, and A. Weiss, Cytoskeletal Polarization of T Cells Is Regulated by an Immunoreceptor Tyrosine-based Activation Motif???dependent Mechanism, The Journal of Cell Biology, vol.137, issue.4, pp.861-71, 1998.
DOI : 10.1084/jem.160.5.1284

N. Martin-cofreces, D. Sancho, E. Fernandez, M. Vicente-manzanares, M. Gordon-alonso et al., Role of Fyn in the Rearrangement of Tubulin Cytoskeleton Induced through TCR, The Journal of Immunology, vol.176, issue.7, pp.4201-4208, 2006.
DOI : 10.4049/jimmunol.176.7.4201

URL : https://hal.archives-ouvertes.fr/pasteur-00164640

N. Martin-cofreces, J. Robles-valero, J. Cabrero, M. Mittelbrunn, M. Gordon-alonso et al., MTOC translocation modulates IS formation and controls sustained T cell signaling, The Journal of Cell Biology, vol.1744, issue.5, pp.951-62, 2008.
DOI : 10.1084/jem.185.10.1877

J. Serrador, J. Cabrero, D. Sancho, M. Mittelbrunn, A. Urzainqui et al., HDAC6 Deacetylase Activity Links the Tubulin Cytoskeleton with Immune Synapse Organization, Immunity, vol.20, issue.4, pp.417-445, 2004.
DOI : 10.1016/S1074-7613(04)00078-0

H. Ueda, J. Zhou, J. Xie, and M. Davis, Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion, The Journal of Immunology, vol.195, issue.9, pp.4117-4142, 2015.
DOI : 10.4049/jimmunol.1402175

E. Eng, A. Bettio, J. Ibrahim, and R. Harrison, MTOC Reorientation Occurs during Fc??R-mediated Phagocytosis in Macrophages, Molecular Biology of the Cell, vol.18, issue.7, pp.2389-99, 2007.
DOI : 10.1091/mbc.E06-12-1128

M. Faroudi, C. Utzny, M. Salio, V. Cerundolo, M. Guiraud et al., Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: Manifestation of a dual activation threshold, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.14145-50, 2003.
DOI : 10.1073/pnas.2334336100

H. Soares, R. Henriques, M. Sachse, L. Ventimiglia, M. Alonso et al., Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse, The Journal of Experimental Medicine, vol.210, issue.11, pp.2415-2448, 2013.
DOI : 10.1038/ni.2049

URL : https://hal.archives-ouvertes.fr/pasteur-01371057

V. Das, B. Nal, A. Dujeancourt, M. Thoulouze, T. Galli et al., Activation-Induced Polarized Recycling Targets T Cell Antigen Receptors to the Immunological Synapse, Immunity, vol.20, issue.5, pp.577-88, 2004.
DOI : 10.1016/S1074-7613(04)00106-2

URL : https://hal.archives-ouvertes.fr/pasteur-00137478

N. Martin-cofreces, F. Baixauli, M. Lopez, D. Gil, A. Monjas et al., End-binding protein 1 controls signal propagation from the T cell receptor, The EMBO Journal, vol.195, issue.21, pp.314140-52, 2012.
DOI : 10.1038/emboj.2012.242

A. Hashimoto-tane, T. Yokosuka, K. Sakata-sogawa, M. Sakuma, C. Ishihara et al., Dynein-Driven Transport of T Cell Receptor Microclusters Regulates Immune Synapse Formation and T Cell Activation, Immunity, vol.34, issue.6, pp.919-950, 2011.
DOI : 10.1016/j.immuni.2011.05.012

S. Marion, J. Mazzolini, F. Herit, P. Bourdoncle, N. Kambou-pene et al., The NF-??B Signaling Protein Bcl10 Regulates Actin Dynamics by Controlling AP1 and OCRL-Bearing Vesicles, Developmental Cell, vol.23, issue.5, pp.954-67, 2012.
DOI : 10.1016/j.devcel.2012.09.021

C. Scott, W. Dobson, R. Botelho, N. Coady-osberg, P. Chavrier et al., phosphate hydrolysis directs actin remodeling during phagocytosis, The Journal of Cell Biology, vol.269, issue.1, pp.139-188, 2005.
DOI : 10.1091/mbc.E04-06-0509

M. Bohdanowicz, D. Balkin, D. Camilli, P. Grinstein, and S. , Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling, Molecular Biology of the Cell, vol.23, issue.1, pp.176-87, 2012.
DOI : 10.1091/mbc.E11-06-0489

A. Kuhbacher, D. Dambournet, A. Echard, P. Cossart, and J. Pizarro-cerda, Infection, Journal of Biological Chemistry, vol.287, issue.16, pp.13128-13164, 2012.
DOI : 10.1074/jbc.M111.315788

URL : https://hal.archives-ouvertes.fr/pasteur-01162143

H. Sarantis, D. Balkin, D. Camilli, P. Isberg, R. Brumell et al., Yersinia Entry into Host Cells Requires Rab5-Dependent Dephosphorylation of PI(4,5)P2 and Membrane Scission, Cell Host & Microbe, vol.11, issue.2, pp.117-145, 2012.
DOI : 10.1016/j.chom.2012.01.010

S. Matsui, S. Matsumoto, R. Adachi, K. Kusui, A. Hirayama et al., LIM Kinase 1 Modulates Opsonized Zymosan-triggered Activation of Macrophage-like U937 Cells: POSSIBLE INVOLVEMENT OF PHOSPHORYLATION OF COFILIN AND REORGANIZATION OF ACTIN CYTOSKELETON, Journal of Biological Chemistry, vol.277, issue.1, pp.544-553, 2002.
DOI : 10.1074/jbc.M110153200

D. Schlam, R. Bagshaw, S. Freeman, R. Collins, T. Pawson et al., Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules, Nat Commun Nat Rev Immunol, vol.6, issue.8, pp.10568-7910, 1038.

L. Floc-'h, A. Tanaka, Y. Bantilan, N. Voisinne, G. Altan-bonnet et al., Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse, J Exp Med, vol.210, issue.12, pp.2721-2758, 2013.

A. Ritter, Y. Asano, J. Stinchcombe, N. Dieckmann, B. Chen et al., Actin Depletion Initiates Events Leading to Granule Secretion at the Immunological Synapse, Immunity, vol.42, issue.5, pp.864-76, 2015.
DOI : 10.1016/j.immuni.2015.04.013

K. Holevinsky and D. Nelson, Membrane Capacitance Changes Associated with Particle Uptake during Phagocytosis in Macrophages, Biophysical Journal, vol.75, issue.5, pp.2577-8610, 1998.
DOI : 10.1016/S0006-3495(98)77703-3

D. Hackam, O. Rotstein, M. Bennett, A. Klip, S. Grinstein et al., Characterization and subcellular localization of target membrane soluble NSF attachment protein receptors (t-SNAREs) in macrophages. Syntaxins 2, 3, and 4 are present on phagosomal membranes, Frontiers in Immunology | www.frontiersin.org 92, pp.1564377-83, 1996.

D. Hackam, O. Rotstein, C. Sjolin, A. Schreiber, W. Trimble et al., v-SNARE-dependent secretion is required for phagocytosis, Proceedings of the National Academy of Sciences, vol.95, issue.20, pp.11691-11697, 1998.
DOI : 10.1073/pnas.95.20.11691

T. Sudhof and J. Rizo, Synaptic Vesicle Exocytosis, Cold Spring Harbor Perspectives in Biology, vol.3, issue.12, 2011.
DOI : 10.1101/cshperspect.a005637

V. Braun and F. Niedergang, Linking exocytosis and endocytosis during phagocytosis, Biology of the Cell, vol.273, issue.3, pp.195-201, 2006.
DOI : 10.1042/BC20050021

C. Deschamps, A. Echard, and F. Niedergang, Phagocytosis and Cytokinesis: Do Cells Use Common Tools to Cut and to Eat? Highlights on Common Themes and Differences, Traffic, vol.132, issue.Pt 3, pp.355-64, 2013.
DOI : 10.1111/tra.12045

R. Murray and J. Stow, Cytokine Secretion in Macrophages: SNAREs, Rabs, and Membrane Trafficking, Frontiers in Immunology, vol.9, 2014.
DOI : 10.1021/pr100386r

L. Bajno, X. Peng, A. Schreiber, H. Moore, W. Trimble et al., Focal Exocytosis of Vamp3-Containing Vesicles at Sites of Phagosome Formation, The Journal of Cell Biology, vol.247, issue.3, pp.697-705, 2000.
DOI : 10.1074/jbc.273.31.19625

F. Niedergang, E. Colucci-guyon, T. Dubois, G. Raposo, and P. Chavrier, ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages, The Journal of Cell Biology, vol.19, issue.6, pp.1143-50, 2003.
DOI : 10.1074/jbc.273.32.19977

V. Braun, C. Deschamps, G. Raposo, P. Benaroch, A. Benmerah et al., AP-1 and ARF1 Control Endosomal Dynamics at Sites of FcR mediated Phagocytosis, Molecular Biology of the Cell, vol.18, issue.12, pp.4921-4952, 2007.
DOI : 10.1091/mbc.E07-04-0392

V. Braun, V. Fraisier, G. Raposo, I. Hurbain, J. Sibarita et al., TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages, The EMBO Journal, vol.172, issue.21, pp.4166-76, 2004.
DOI : 10.1038/35052055

C. Czibener, N. Sherer, S. Becker, M. Pypaert, E. Hui et al., and synaptotagmin VII???dependent delivery of lysosomal membrane to nascent phagosomes, The Journal of Cell Biology, vol.247, issue.7, pp.997-1007, 2006.
DOI : 10.1073/pnas.81.17.5430

R. Murray, J. Kay, D. Sangermani, and J. Stow, A Role for the Phagosome in Cytokine Secretion, Science, vol.310, issue.5753, pp.3101492-3101497, 2005.
DOI : 10.1126/science.1120225

F. Finetti, L. Patrussi, D. Galgano, C. Cassioli, G. Perinetti et al., The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse, Journal of Cell Science, vol.128, issue.14, pp.2541-52, 2015.
DOI : 10.1242/jcs.171652

F. Finetti, S. Paccani, M. Riparbelli, E. Giacomello, G. Perinetti et al., Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse, Nature Cell Biology, vol.25, issue.11, pp.1332-910, 1038.
DOI : 10.1038/ncb1977

P. Larghi, D. Williamson, J. Carpier, S. Dogniaux, K. Chemin et al., VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites, Nature Immunology, vol.172, issue.7, pp.723-754, 2013.
DOI : 10.1002/jbio.200900089

M. Menager, G. Menasche, M. Romao, P. Knapnougel, C. Ho et al., Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nature Immunology, vol.4, issue.3, pp.257-6710, 1038.
DOI : 10.1002/(SICI)1097-0320(19960101)23:1<15::AID-CYTO3>3.0.CO;2-L

J. Feldmann, I. Callebaut, G. Raposo, S. Certain, D. Bacq et al., Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3), Cell, vol.115, issue.4, pp.461-73, 2003.
DOI : 10.1016/S0092-8674(03)00855-9

M. Purbhoo, H. Liu, S. Oddos, D. Owen, M. Neil et al., Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse, Science Signaling, vol.3, issue.121, 2010.
DOI : 10.1126/scisignal.2000645

D. Williamson, D. Owen, J. Rossy, A. Magenau, M. Wehrmann et al., Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nature Immunology, vol.87, issue.7, pp.655-62, 2011.
DOI : 10.1002/jbio.200900089

L. Balagopalan, V. Barr, R. Kortum, A. Park, and L. Samelson, Cutting Edge: Cell Surface Linker for Activation of T Cells Is Recruited to Microclusters and Is Active in Signaling, The Journal of Immunology, vol.190, issue.8, pp.3849-53, 2013.
DOI : 10.4049/jimmunol.1202760

A. Batista, J. Millan, M. Mittelbrunn, F. Sanchez-madrid, and M. Alonso, Recruitment of Transferrin Receptor to Immunological Synapse in Response to TCR Engagement, The Journal of Immunology, vol.172, issue.11, pp.6709-6723, 2004.
DOI : 10.4049/jimmunol.172.11.6709

C. Hivroz, K. Chemin, M. Tourret, and A. Bohineust, Crosstalk between T Lymphocytes and Dendritic Cells, Critical Reviews??? in Immunology, vol.32, issue.2, pp.139-55, 2012.
DOI : 10.1615/CritRevImmunol.v32.i2.30

D. Cox, D. Lee, B. Dale, J. Calafat, and S. Greenberg, A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis, Proceedings of the National Academy of Sciences, vol.97, issue.2, pp.680-685, 2000.
DOI : 10.1073/pnas.97.2.680

M. Damiani, M. Pavarotti, N. Leiva, A. Lindsay, M. Mccaffrey et al., Rab Coupling Protein Associates with Phagosomes and Regulates Recycling from the Phagosomal Compartment, Traffic, vol.266, issue.2, pp.785-97, 2004.
DOI : 10.1111/j.1600-0854.2004.00220.x

P. Patel and R. Harrison, Membrane Ruffles Capture C3bi-opsonized Particles in Activated Macrophages, Molecular Biology of the Cell, vol.19, issue.11, pp.4628-4667, 2008.
DOI : 10.1091/mbc.E08-02-0223

P. Beemiller, A. Hoppe, and J. Swanson, A phosphatidylinositol-3-kinase-de- pendent signal transition regulates ARF1 and ARF6 during Fcgamma receptor-mediated phagocytosis, PLoS Biol, vol.4, issue.6, 2006.

Q. Zhang, J. Calafat, H. Janssen, and S. Greenberg, ARF6 Is Required for Growth Factor- and Rac-Mediated Membrane Ruffling in Macrophages at a Stage Distal to Rac Membrane Targeting, Molecular and Cellular Biology, vol.19, issue.12, pp.8158-68, 1999.
DOI : 10.1128/MCB.19.12.8158

Y. Egami, M. Fukuda, and N. Araki, Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during Fc??R-mediated phagocytosis, Journal of Cell Science, vol.124, issue.21, pp.3557-67, 2011.
DOI : 10.1242/jcs.083881

J. Shim, S. Lee, M. Lee, J. Yoon, H. Kweon et al., Rab35 Mediates Transport of Cdc42 and Rac1 to the Plasma Membrane during Phagocytosis, Molecular and Cellular Biology, vol.30, issue.6, pp.1421-1454, 2010.
DOI : 10.1128/MCB.01463-09

J. Yeo, A. Wall, L. Luo, and J. Stow, Rab31 and APPL2 enhance Fc??R-mediated phagocytosis through PI3K/Akt signaling in macrophages, Molecular Biology of the Cell, vol.26, issue.5, pp.952-65, 2015.
DOI : 10.1091/mbc.E14-10-1457

D. Dambournet, M. Machicoane, L. Chesneau, M. Sachse, M. Rocancourt et al., Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis, Nature Cell Biology, vol.2, issue.8, pp.981-989, 2011.
DOI : 10.1038/ncb2279

M. Dustin, Signaling at neuro/immune synapses, Journal of Clinical Investigation, vol.122, issue.4, pp.1149-55, 2012.
DOI : 10.1172/JCI58705