J. Cohen, The immunopathogenesis of sepsis, Nature, vol.288, issue.6917, pp.885-891, 2002.
DOI : 10.1038/nature01023

L. Gamrin, Longitudinal changes of biochemical parameters in muscle during critical illness, Metabolism, vol.46, issue.7, pp.756-762, 1997.
DOI : 10.1016/S0026-0495(97)90119-0

B. Mittendorfer, D. C. Gore, D. N. Herndon, and R. R. Wolfe, Accelerated glutamine synthesis in critically ill patients cannot maintain normal intramuscular free glutamine concentration, Journal of Parenteral and Enteral Nutrition, vol.23, issue.5, pp.243-250, 1999.
DOI : 10.1177/0148607199023005243

M. J. Rennie, Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance, J. Nutr, vol.126, pp.1142-1149, 1996.

H. G. Windmueller and A. Spaeth, Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate, J. Biol. Chem, vol.255, pp.107-112, 1980.

E. A. Newsholme and M. Parry-billings, Properties of Glutamine Release From Muscle and Its Importance for the Immune System, Journal of Parenteral and Enteral Nutrition, vol.14, issue.4 Suppl, pp.63-67, 1990.
DOI : 10.1177/014860719001400406

T. C. Vary and S. R. Kimball, Regulation of hepatic protein synthesis in chronic inflammation and sepsis, Am. J. Physiol, vol.262, pp.445-452, 1992.

C. Langhans, Inflammation-Induced Acute Phase Response in Skeletal Muscle and Critical Illness Myopathy, PLoS ONE, vol.36, issue.3, p.92048, 2014.
DOI : 10.1371/journal.pone.0092048.s012

URL : https://hal.archives-ouvertes.fr/hal-01365918

W. D. Reid and N. A. Macgowan, Respiratory muscle injury in animal models and humans, Molecular and Cellular Biochemistry, vol.179, issue.1/2, pp.63-80, 1998.
DOI : 10.1023/A:1006803703128

P. Bonaldo and M. Sandri, Cellular and molecular mechanisms of muscle atrophy, Disease Models & Mechanisms, vol.6, issue.1, pp.25-39, 2013.
DOI : 10.1242/dmm.010389

T. Wollersheim, Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness, Intensive Care Medicine, vol.153, issue.4, pp.528-538, 2014.
DOI : 10.1007/s00134-014-3224-9

M. S. Herridge, Functional Disability 5 Years after Acute Respiratory Distress Syndrome, New England Journal of Medicine, vol.364, issue.14, pp.1293-1304, 2011.
DOI : 10.1056/NEJMoa1011802

T. J. Iwashyna, E. W. Ely, D. M. Smith, and K. M. Langa, Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis, JAMA, vol.304, issue.16, pp.1787-1794, 2010.
DOI : 10.1001/jama.2010.1553

C. Lepper, T. A. Partridge, and C. M. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.
DOI : 10.1242/dev.067595

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3637, 2011.
DOI : 10.1242/dev.064162

R. Sambasivan, Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.17, pp.3647-3656, 2011.
DOI : 10.1242/dev.067587

URL : https://hal.archives-ouvertes.fr/hal-00667781

D. Trachootham, W. Lu, M. A. Ogasawara, R. D. Nilsa, and P. Huang, Redox Regulation of Cell Survival, Antioxidants & Redox Signaling, vol.10, issue.8, pp.1343-1374, 2008.
DOI : 10.1089/ars.2007.1957

R. Sambasivan, Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

R. L. Davis, H. Weintraub, and A. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, vol.51, issue.6, pp.987-1000, 1987.
DOI : 10.1016/0092-8674(87)90585-X

A. B. Lassar, B. M. Paterson, and H. Weintraub, Transfection of a DNA locus that mediates the conversion of 10T12 fibroblasts to myoblasts, Cell, vol.47, issue.5, pp.649-656, 1986.
DOI : 10.1016/0092-8674(86)90507-6

V. Andres and K. Walsh, Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis, The Journal of Cell Biology, vol.132, issue.4, pp.657-666, 1996.
DOI : 10.1083/jcb.132.4.657

V. Malec, HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic, Biol. Med, vol.48, pp.1626-1635, 2010.

R. Pamplona and D. Costantini, Molecular and structural antioxidant defenses against oxidative stress in animals, AJP: Regulatory, Integrative and Comparative Physiology, vol.301, issue.4, pp.843-863, 2011.
DOI : 10.1152/ajpregu.00034.2011

D. A. Taylor-fishwick and . Nox, NOX, NOX Who is There? The Contribution of NADPH Oxidase One to Beta Cell Dysfunction, Frontiers in Endocrinology, vol.4, p.40, 2013.
DOI : 10.3389/fendo.2013.00040

C. K. Tsang, Y. Liu, J. Thomas, Y. Zhang, and X. Zheng, Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance, Nature Communications, vol.22, p.3446, 2014.
DOI : 10.1038/ncomms4446

L. Doridot, , a Pre-Eclampsia-Associated Gene, Antioxidants & Redox Signaling, vol.21, issue.6, pp.819-834, 2014.
DOI : 10.1089/ars.2013.5661

C. Handschin and B. M. Spiegelman, The role of exercise and PGC1?? in inflammation and chronic disease, Nature, vol.2, issue.7203, pp.463-469, 2008.
DOI : 10.1038/nature07206

L. Chatre and M. Ricchetti, Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging, Journal of Cell Science, vol.126, issue.4, pp.914-926, 2013.
DOI : 10.1242/jcs.114322

M. Latil, Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nature Communications, vol.76, p.903, 2012.
DOI : 10.1038/ncomms1890

URL : https://hal.archives-ouvertes.fr/pasteur-00711881

X. Xu, Mitochondrial Regulation in Pluripotent Stem Cells, Cell Metabolism, vol.18, issue.3, pp.325-332, 2013.
DOI : 10.1016/j.cmet.2013.06.005

M. A. Matthay, A. Goolaerts, J. P. Howard, and J. W. Lee, Mesenchymal stem cells for acute lung injury: Preclinical evidence, Critical Care Medicine, vol.38, pp.569-573, 2010.
DOI : 10.1097/CCM.0b013e3181f1ff1d

D. J. Prockop, D. J. Kota, N. Bazhanov, and R. L. Reger, Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs), Journal of Cellular and Molecular Medicine, vol.17, issue.9, pp.2190-2199, 2010.
DOI : 10.1111/j.1582-4934.2010.01151.x

D. J. Weiss, J. K. Kolls, L. A. Ortiz, A. Panoskaltsis-mortari, and D. J. Prockop, Stem Cells and Cell Therapies in Lung Biology and Lung Diseases, Proceedings of the American Thoracic Society, vol.5, issue.5, pp.637-667, 2008.
DOI : 10.1513/pats.200804-037DW

H. Yagi, Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFR1, Molecular Therapy, vol.18, issue.10, pp.1857-1864, 2010.
DOI : 10.1038/mt.2010.155

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951565

D. D. Houlihan, Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-??, Nature Protocols, vol.84, issue.12, pp.2103-2111, 2012.
DOI : 10.1182/blood-2005-06-2211

R. S. Hotchkiss and D. W. Nicholson, Apoptosis and caspases regulate death and inflammation in sepsis, Nature Reviews Immunology, vol.176, issue.11, pp.813-822, 2006.
DOI : 10.1038/nri1943

M. F. Pittenger, Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

S. Wakitani, T. Saito, and A. Caplan, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine, Muscle & Nerve, vol.61, issue.12, pp.1417-1426, 1995.
DOI : 10.1002/mus.880181212

A. Caplan, Mesenchymal stem cells, Journal of Orthopaedic Research, vol.86, issue.5, pp.641-650, 1991.
DOI : 10.1002/jor.1100090504

R. Kelly, S. Alonso, S. Tajbakhsh, G. Cossu, and M. Buckingham, Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice, The Journal of Cell Biology, vol.129, issue.2, pp.383-396, 1995.
DOI : 10.1083/jcb.129.2.383

C. Huchet and C. Leoty, Effects of cyclopiazonic acid on Ca2+-activated tension production in skinned skeletal muscle fibres of the ferret, European Journal of Pharmacology, vol.241, issue.1, pp.41-46, 1993.
DOI : 10.1016/0014-2999(93)90930-G

R. E. Godt and T. M. Nosek, Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle., The Journal of Physiology, vol.412, issue.1
DOI : 10.1113/jphysiol.1989.sp017609

B. De-jonghe, Paresis Acquired in the Intensive Care Unit<SUBTITLE>A Prospective Multicenter Study</SUBTITLE>, JAMA, vol.288, issue.22, pp.2859-2867, 2002.
DOI : 10.1001/jama.288.22.2859

D. Letter and M. A. , Critical illness polyneuropathy and myopathy (CIPNM): evidence for local immune activation by cytokine-expression in the muscle tissue, Journal of Neuroimmunology, vol.106, issue.1-2, pp.206-213, 2000.
DOI : 10.1016/S0165-5728(99)00252-0

S. N. Fletcher, Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness*, Critical Care Medicine, vol.31, issue.4, pp.1012-1016, 2003.
DOI : 10.1097/01.CCM.0000053651.38421.D9

U. A. Zifko, Long-term outcome of critical illness polyneuropathy, Muscle & Nerve, vol.110, issue.S9, pp.49-52, 2000.
DOI : 10.1002/1097-4598(2000)999:9<::AID-MUS9>3.0.CO;2-9

C. C. Dos-santos, Network Analysis of Transcriptional Responses Induced by Mesenchymal Stem Cell Treatment of Experimental Sepsis, The American Journal of Pathology, vol.181, issue.5, pp.1681-1692, 2012.
DOI : 10.1016/j.ajpath.2012.08.009

S. R. Hall, Mesenchymal Stromal Cells Improve Survival During Sepsis in the Absence of Heme Oxygenase-1: The Importance of Neutrophils, STEM CELLS, vol.24, issue.2, pp.397-407, 2013.
DOI : 10.1002/stem.1270

N. Kusadasi and A. B. Groeneveld, A Perspective on Mesenchymal Stromal Cell Transplantation in the Treatment of Sepsis, Shock, vol.40, issue.5, pp.352-357, 2013.
DOI : 10.1097/SHK.0000000000000039

S. H. Mei, Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis, American Journal of Respiratory and Critical Care Medicine, vol.182, issue.8, pp.1047-1057, 2010.
DOI : 10.1164/rccm.201001-0010OC

K. Nemeth, Bone marrow stromal cells attenuate sepsis via prostaglandin E2???dependent reprogramming of host macrophages to increase their interleukin-10 production, Nature Medicine, vol.16, issue.1, pp.42-49, 2009.
DOI : 10.1006/bbrc.1996.1112