T. Bartosh, J. Ylostalo, A. Mohammadipoor, N. Bazhanov, K. Coble et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties, Proceedings of the National Academy of Sciences, vol.107, issue.31, pp.13724-13733, 2010.
DOI : 10.1073/pnas.1008117107

J. Santos, R. Barcia, S. Simoes, M. Gaspar, S. Calado et al., The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX??) in the treatment of inflammatory arthritis, Journal of Translational Medicine, vol.11, issue.1, p.18, 2013.
DOI : 10.1093/jmcb/mjr039

J. Kato, H. Kamiya, T. Himeno, T. Shibata, M. Kondo et al., Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats, Journal of Diabetes and its Complications, vol.28, issue.5, pp.588-95, 2014.
DOI : 10.1016/j.jdiacomp.2014.05.003

A. Clover, A. Kumar, M. Isakson, D. Whelan, A. Stocca et al., Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing, Burns, vol.41, issue.3, pp.548-57, 2014.
DOI : 10.1016/j.burns.2014.08.009

Y. Jeon, Y. Jang, D. Yoo, S. Kim, S. Lee et al., Mesenchymal stem cells' interaction with skin: Wound-healing effect on fibroblast cells and skin tissue, Wound Repair and Regeneration, vol.54, issue.6, pp.655-61, 2010.
DOI : 10.1111/j.1524-475X.2010.00636.x

J. Chen, V. Wong, and G. Gurtner, Therapeutic potential of bone marrowderived mesenchymal stem cells for cutaneous wound healing, Front Immunol, vol.3, p.192, 2012.

S. Barrientos, O. Stojadinovic, M. Golinko, and H. Brem, PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing, Wound Repair and Regeneration, vol.119, issue.(P, pp.585-601, 2008.
DOI : 10.1111/j.1524-475X.2008.00410.x

X. Liang, Y. Ding, Y. Zhang, H. Tse, and Q. Lian, Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives, Cell Transplantation, vol.23, issue.9, pp.1045-59, 2013.
DOI : 10.3727/096368913X667709

P. Baraniak and T. Mcdevitt, Stem cell paracrine actions and tissue regeneration, Regenerative Medicine, vol.5, issue.1, pp.121-164, 2010.
DOI : 10.2217/rme.09.74

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2833273

S. Bartaula-brevik, T. Pedersen, A. Blois, P. Papadakou, A. Finne-wistrand et al., Leukocyte transmigration into tissue-engineered constructs is influenced by endothelial cells through Toll-like receptor signaling, Stem Cell Research & Therapy, vol.5, issue.6, p.143, 2014.
DOI : 10.1084/jem.20041385

URL : http://doi.org/10.1186/scrt533

D. Troyer and M. Weiss, Concise Review: Wharton's Jelly-Derived Cells Are a Primitive Stromal Cell Population, Stem Cells, vol.42, issue.3, pp.591-600, 2008.
DOI : 10.1634/stemcells.2007-0439

J. Miranda, F. E. Fernandes, A. Almeida, J. Martins, J. et al., The Human Umbilical Cord Tissue-Derived MSC Population UCX<SUP>??</SUP> Promotes Early Motogenic Effects on Keratinocytes and Fibroblasts and G-CSF-Mediated Mobilization of BM-MSCs When Transplanted In Vivo, Cell Transplantation, vol.24, issue.5, pp.865-77, 2015.
DOI : 10.3727/096368913X676231

D. Nascimento, D. Mosqueira, L. Sousa, M. Teixeira, F. M. Resende et al., Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms, Stem Cell Research & Therapy, vol.5, issue.1, p.5, 2014.
DOI : 10.1038/nm912

URL : http://doi.org/10.1186/scrt394

M. Dominici, L. Blanc, K. Mueller, I. Slaper-cortenbach, I. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-322, 2006.
DOI : 10.1080/14653240600855905

A. Arno, S. Amini-nik, P. Blit, M. Shehab, C. Belo et al., Human Wharton???s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling, Stem Cell Research & Therapy, vol.5, issue.1, p.28, 2014.
DOI : 10.3109/14653249.2011.605119

C. Fong, K. Tam, S. Cheyyatraivendran, S. Gan, K. Gauthaman et al., Human Wharton's Jelly Stem Cells and Its Conditioned Medium Enhance Healing of Excisional and Diabetic Wounds, Journal of Cellular Biochemistry, vol.104, issue.2, pp.290-302, 2014.
DOI : 10.1002/jcb.24661

S. Edwards, G. Zavala, C. Prieto, M. Elliott, S. Martinez et al., Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton???s jelly in dermal regeneration, Angiogenesis, vol.12, issue.574, pp.851-66, 2014.
DOI : 10.1007/s10456-014-9432-7

P. Baraniak and T. Mcdevitt, Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential, Cell and Tissue Research, vol.94, issue.2, pp.701-712, 2012.
DOI : 10.1007/s00441-011-1215-5

J. Frith, B. Thomson, and P. Genever, Dynamic Three-Dimensional Culture Methods Enhance Mesenchymal Stem Cell Properties and Increase Therapeutic Potential, Tissue Engineering Part C: Methods, vol.16, issue.4, pp.735-784, 2010.
DOI : 10.1089/ten.tec.2009.0432

J. Miranda, S. Leite, U. Muller-vieira, A. Rodrigues, M. Carrondo et al., Culture, Tissue Engineering Part C: Methods, vol.15, issue.2, pp.157-67, 2009.
DOI : 10.1089/ten.tec.2008.0352

URL : https://hal.archives-ouvertes.fr/pasteur-01164725

J. Miranda, A. Rodrigues, R. Tostoes, S. Leite, H. Zimmerman et al., Extending Hepatocyte Functionality for Drug-Testing Applications Using High-Viscosity Alginate???Encapsulated Three-Dimensional Cultures in Bioreactors, Tissue Engineering Part C: Methods, vol.16, issue.6, pp.1223-1255, 2010.
DOI : 10.1089/ten.tec.2009.0784

R. Tostoes, S. Leite, J. Miranda, M. Sousa, D. Wang et al., Perfusion of 3D encapsulated hepatocytes-A synergistic effect enhancing long-term functionality in bioreactors, Biotechnology and Bioengineering, vol.28, issue.7, pp.41-50, 2011.
DOI : 10.1002/bit.22920

M. Arufe, D. La-fuente, A. Fuentes-boquete, I. , D. Toro et al., human mesenchymal stem cells into chondrocyte-like cells through spheroid formation, Journal of Cellular Biochemistry, vol.168, issue.5, pp.145-55, 2009.
DOI : 10.1002/jcb.22238

V. Sabapathy, B. Sundaram, M. V. Mankuzhy, P. Kumar, and S. , Human Wharton???s Jelly Mesenchymal Stem Cells Plasticity Augments Scar-Free Skin Wound Healing with Hair Growth, PLoS ONE, vol.19, issue.4, p.93726, 2014.
DOI : 10.1371/journal.pone.0093726.s001

S. Hsu and P. Hsieh, Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model, Wound Repair and Regeneration, vol.26, issue.1, pp.57-64, 2014.
DOI : 10.1111/wrr.12239

V. Ballotta, A. Smits, A. Driessen-mol, C. Bouten, and F. Baaijens, Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow, Biomaterials, vol.35, issue.33, pp.9100-9113, 2014.
DOI : 10.1016/j.biomaterials.2014.07.042

C. Rettinger, A. Fourcaudot, S. Hong, T. Mustoe, R. Hale et al., In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates, Cell and Tissue Research, vol.2, issue.Suppl 1, pp.395-405, 2014.
DOI : 10.1007/s00441-014-1939-0

M. Serra, C. Brito, M. Sousa, J. Jensen, R. Tostoes et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control, Journal of Biotechnology, vol.148, issue.4, pp.208-223, 2010.
DOI : 10.1016/j.jbiotec.2010.06.015

J. Santos, R. Soares, J. Martins, V. Basto, M. Coelho et al., Optimised and defined method for isolation and preservation of precursor cells from human umbilical cord, INPI, 2008.

O. Lee, T. Kuo, W. Chen, K. Lee, S. Hsieh et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood, Blood, vol.103, issue.5, pp.1669-75, 2004.
DOI : 10.1182/blood-2003-05-1670

A. Mackay, S. Beck, J. Murphy, F. Barry, C. Chichester et al., Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow, Tissue Engineering, vol.4, issue.4, pp.415-443, 1998.
DOI : 10.1089/ten.1998.4.415

H. Wang, S. Hung, S. Peng, C. Huang, H. Wei et al., Mesenchymal Stem Cells in the Wharton's Jelly of the Human Umbilical Cord, Stem Cells, vol.74, issue.7, pp.1330-1337, 2004.
DOI : 10.1634/stemcells.2004-0013

R. Tostoes, S. Leite, M. Serra, J. Jensen, P. Bjorquist et al., Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing, Hepatology, vol.122, issue.4, pp.1227-1263, 2012.
DOI : 10.1002/hep.24760

I. Arnaoutova and H. Kleinman, In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract, Nature Protocols, vol.103, issue.4, pp.628-663, 2010.
DOI : 10.1038/nprot.2010.6

R. Galiano, J. Michaels, M. Dobryansky, J. Levine, and G. Gurtner, Quantitative and reproducible murine model of excisional wound healing, Wound Repair and Regeneration, vol.164, issue.4, pp.485-92, 2004.
DOI : 10.1007/BF00429772

S. Maxson, E. Lopez, D. Yoo, A. Danilkovitch-miagkova, and M. Leroux, Concise Review: Role of Mesenchymal Stem Cells in Wound Repair, STEM CELLS Translational Medicine, vol.91, issue.suppl 2, pp.142-151, 2012.
DOI : 10.5966/sctm.2011-0018

M. Walter, K. Wright, H. Fuller, S. Macneil, and W. Johnson, Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays, Experimental Cell Research, vol.316, issue.7, pp.1271-81, 2010.
DOI : 10.1016/j.yexcr.2010.02.026

C. Kim, J. Lee, J. Won, and M. Cho, Mesenchymal Stem Cells Improve Wound Healing In Vivo via Early Activation of Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor, Journal of Korean Medical Science, vol.26, issue.6, pp.726-759, 2011.
DOI : 10.3346/jkms.2011.26.6.726

K. Tam, S. Cheyyatraviendran, J. Venugopal, A. Biswas, M. Choolani et al., A Nanoscaffold Impregnated With Human Wharton's Jelly Stem Cells or Its Secretions Improves Healing of Wounds, Journal of Cellular Biochemistry, vol.107, issue.4, pp.794-803, 2014.
DOI : 10.1002/jcb.24723

I. Potapova, P. Brink, I. Cohen, and S. Doronin, Culturing of Human Mesenchymal Stem Cells as Three-dimensional Aggregates Induces Functional Expression of CXCR4 That Regulates Adhesion to Endothelial Cells, Journal of Biological Chemistry, vol.283, issue.19, pp.13100-13107, 2008.
DOI : 10.1074/jbc.M800184200

J. Ylostalo, T. Bartosh, K. Coble, and D. Prockop, Human Mesenchymal Stem/Stromal Cells Cultured as Spheroids are Self-activated to Produce Prostaglandin E2 that Directs Stimulated Macrophages into an Anti-inflammatory Phenotype, STEM CELLS, vol.29, issue.10, pp.2283-96, 2012.
DOI : 10.1002/stem.1191

J. Moreira, P. Alves, J. Aunins, and M. Carrondo, Hydrodynamic effects on BHK cells grown as suspended natural aggregates, Biotechnology and Bioengineering, vol.23, issue.4, pp.351-60, 1995.
DOI : 10.1002/bit.260460408

R. Lin and H. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnology Journal, vol.296, issue.9-10, pp.1172-84, 2008.
DOI : 10.1002/biot.200700228

R. Lin, L. Chou, C. Chien, and H. Chang, Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and ??1-integrin, Cell and Tissue Research, vol.311, issue.3, pp.411-433, 2006.
DOI : 10.1007/s00441-005-0148-2

A. Nanaev, G. Kohnen, A. Milovanov, S. Domogatsky, and P. Kaufmann, Stromal differentiation and architecture of the human umbilical cord, Placenta, vol.18, issue.1, pp.53-64, 1997.
DOI : 10.1016/S0143-4004(97)90071-0

I. Potapova, G. Gaudette, P. Brink, R. Robinson, M. Rosen et al., Mesenchymal Stem Cells Support Migration, Extracellular Matrix Invasion, Proliferation, and Survival of Endothelial Cells In Vitro, Stem Cells, vol.39, issue.7, pp.1761-1769, 2007.
DOI : 10.1634/stemcells.2007-0022

C. Drake, A. Larue, N. Ferrara, and C. Little, VEGF Regulates Cell Behavior during Vasculogenesis, Developmental Biology, vol.224, issue.2, pp.178-88, 2000.
DOI : 10.1006/dbio.2000.9744

A. Kawada, M. Hiruma, H. Noguchi, A. Ishibashi, K. Motoyoshi et al., Granulocyte and macrophage colony-stimulating factors stimulate proliferation of human keratinocytes, Archives of Dermatological Research, vol.289, issue.10, pp.600-602, 1997.
DOI : 10.1007/s004030050246

G. Gurtner, S. Werner, Y. Barrandon, and M. Longaker, Wound repair and regeneration, Nature, vol.23, issue.7193, pp.314-335, 2008.
DOI : 10.1038/nature07039

W. Li, J. Fan, M. Chen, and D. Woodley, Mechanisms of human skin cell motility, Histol Histopathol, vol.19, pp.1311-1335, 2004.

S. Werner and R. Grose, Regulation of wound healing by growth factors and cytokines, Physiol Rev, vol.83, pp.835-70, 2003.

C. Baum and C. Arpey, Normal Cutaneous Wound Healing, Dermatologic Surgery, vol.31, issue.6, pp.674-86, 2005.
DOI : 10.1097/00042728-200506000-00011

D. Bevan, E. Gherardi, T. Fan, D. Edwards, and R. Warn, Diverse and potent activities of HGF/SF in skin wound repair, The Journal of Pathology, vol.203, issue.3, pp.831-839, 2004.
DOI : 10.1002/path.1578

J. Almine, S. Wise, and A. Weiss, Elastin signaling in wound repair, Birth Defects Research Part C: Embryo Today: Reviews, vol.274, issue.2A Suppl, pp.248-57, 2012.
DOI : 10.1002/bdrc.21016

L. Mccawley, O. Brien, P. Hudson, and L. , Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)-mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9, Journal of Cellular Physiology, vol.271, issue.2, pp.255-65, 1998.
DOI : 10.1002/(SICI)1097-4652(199808)176:2<255::AID-JCP4>3.0.CO;2-N

C. Ries, V. Egea, M. Karow, H. Kolb, M. Jochum et al., MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines, Blood, vol.109, issue.9, pp.4055-63, 2007.
DOI : 10.1182/blood-2006-10-051060

T. Mustoe, O. Shaughnessy, K. Kloeters, and O. , Chronic Wound Pathogenesis and Current Treatment Strategies: A Unifying Hypothesis, Plastic and Reconstructive Surgery, vol.117, issue.SUPPLEMENT, pp.35-41, 2006.
DOI : 10.1097/01.prs.0000225431.63010.1b

A. Hoeben, B. Landuyt, M. Highley, H. Wildiers, V. Oosterom et al., Vascular Endothelial Growth Factor and Angiogenesis, Pharmacological Reviews, vol.56, issue.4, pp.549-80, 2004.
DOI : 10.1124/pr.56.4.3