C. Kocks, L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-531, 1992.
DOI : 10.1016/0092-8674(92)90188-I

Y. Yoshikawa, Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nature Cell Biology, vol.113, issue.10, pp.1233-1240, 2009.
DOI : 10.1038/ni.1634

L. Dortet, Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy, PLoS Pathogens, vol.77, issue.8, 2011.
DOI : 10.1371/journal.ppat.1002168.s009

L. Dortet, Listeria and autophagy escape, Autophagy, vol.8, issue.1, pp.132-134, 2012.
DOI : 10.4161/auto.8.1.18218

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335995

A. Wandinger-ness and M. Zerial, Rab Proteins and the Compartmentalization of the Endosomal System, Cold Spring Harbor Perspectives in Biology, vol.6, issue.11, 2014.
DOI : 10.1101/cshperspect.a022616

J. Pizarro-cerda, Phosphoinositides and host???pathogen interactions, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1851, issue.6, 2014.
DOI : 10.1016/j.bbalip.2014.09.011

URL : https://hal.archives-ouvertes.fr/pasteur-01162068

A. Prada-delgado, Interferon-?? Listericidal Action Is Mediated by Novel Rab5a Functions at the Phagosomal Environment, Journal of Biological Chemistry, vol.162, issue.22, pp.19059-19065, 2001.
DOI : 10.1038/35042605

C. Alvarez-domínguez, Characterization of a Listeria monocytogenes Protein Interfering with Rab5a, Traffic, vol.175, issue.3, pp.325-337, 2008.
DOI : 10.1074/jbc.274.21.15284

R. Henry, Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cellular Microbiology, vol.257, issue.1, pp.107-119, 2006.
DOI : 10.1021/cr010142r

L. M. Shaughnessy, Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles, Cellular Microbiology, vol.366, issue.5, pp.781-792, 2006.
DOI : 10.1083/jcb.130.4.821

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2005.00665.x/pdf

P. R. Pryor, In Late Endosome???Lysosome Heterotypic Fusion and in the Reformation of Lysosomes from Hybrid Organelles, The Journal of Cell Biology, vol.265, issue.5, pp.1053-1062, 2000.
DOI : 10.1016/0006-2952(82)90104-6

A. L. Radtke, Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome, Proceedings of the National Academy of Sciences, vol.156, issue.6, pp.1633-1638, 2011.
DOI : 10.1083/jcb.200201081

URL : http://www.pnas.org/content/108/4/1633.full.pdf

H. Repp, Listeriolysin of Listeria monocytogenes forms Ca2+-permeable pores leading to intracellular Ca2+ oscillations, Cellular Microbiology, vol.67, issue.8, pp.483-491, 2002.
DOI : 10.1128/CMR.14.3.584-640.2001

S. Dramsi and P. Cossart, Listeriolysin O-Mediated Calcium Influx Potentiates Entry of Listeria monocytogenes into the Human Hep-2 Epithelial Cell Line, Infection and Immunity, vol.71, issue.6, pp.3614-3618, 2003.
DOI : 10.1128/IAI.71.6.3614-3618.2003

S. Vadia and S. Seveau, Fluxes of Ca2+ and K+ Are Required for the Listeriolysin O-Dependent Internalization Pathway of Listeria monocytogenes, Infection and Immunity, vol.82, issue.3, pp.1084-1091, 2014.
DOI : 10.1128/IAI.01067-13

H. Bierne, The invasion protein InlB from Listeria monocytogenes activates PLC-gamma1 downstream from PI 3-kinase, Cellular Microbiology, vol.60, issue.6, pp.465-476, 2000.
DOI : 10.1016/S0167-4889(97)00006-2

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-5822.2000.00069.x/pdf

N. O. Gekara, The multiple mechanisms of Ca 2+ signalling by listeriolysin O, the cholesteroldependent cytolysin of Listeria monocytogenes, Cell Microbiol, vol.9, 2007.

S. R. Dewamitta, Listeriolysin O-Dependent Bacterial Entry into the Cytoplasm Is Required for Calpain Activation and Interleukin-1?? Secretion in Macrophages Infected with Listeria monocytogenes, Infection and Immunity, vol.78, issue.5, pp.1884-1894, 2010.
DOI : 10.1128/IAI.01143-09

K. Tsuchiya, Involvement of Absent in Melanoma 2 in Inflammasome Activation in Macrophages Infected with Listeria monocytogenes, The Journal of Immunology, vol.185, issue.2, pp.1186-1195, 2010.
DOI : 10.4049/jimmunol.1001058

C. Bentley and C. , Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling, Cellular Microbiology, vol.67, issue.7, pp.945-955, 2005.
DOI : 10.1111/j.1462-5822.2005.00525.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2005.00525.x/pdf

H. Pillich, Activation of the unfolded protein response by Listeria monocytogenes, Cellular Microbiology, vol.59, issue.6, pp.949-964, 2012.
DOI : 10.1136/gut.2008.169656

C. M. Haynes, Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond, Trends in Cell Biology, vol.23, issue.7, pp.311-318, 2013.
DOI : 10.1016/j.tcb.2013.02.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700555

M. W. Pellegrino, Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection, Nature, vol.13, issue.7531, pp.414-417, 2014.
DOI : 10.1016/j.chom.2013.03.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270954

L. Galluzzi, Viral Control of Mitochondrial Apoptosis, PLoS Pathogens, vol.71, issue.5, 2008.
DOI : 10.1371/journal.ppat.1000018.s002

URL : http://doi.org/10.1371/journal.ppat.1000018

T. Rudel, Interactions between bacterial pathogens and mitochondrial cell death pathways, Nature Reviews Microbiology, vol.8, issue.10, pp.693-705, 2010.
DOI : 10.1016/j.tim.2007.10.006

H. Ashida, Cell death and infection: A double-edged sword for host and pathogen survival, The Journal of Cell Biology, vol.1780, issue.6, pp.931-942, 2011.
DOI : 10.1016/j.cell.2010.02.015

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241725/pdf

F. Stavru, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proceedings of the National Academy of Sciences, vol.580, issue.9, pp.3612-3617, 2011.
DOI : 10.1016/j.febslet.2006.03.057

URL : http://www.pnas.org/content/108/9/3612.full.pdf

M. Bielaszewska, Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis, PLoS Pathogens, vol.9, issue.1, 2013.
DOI : 10.1371/journal.ppat.1003797.s009

URL : http://doi.org/10.1371/journal.ppat.1003797

P. Jain, Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death, Proceedings of the National Academy of Sciences, vol.7, issue.2, pp.16032-16037, 2011.
DOI : 10.1111/j.1462-5822.2004.00446.x

F. Stavru, Atypical mitochondrial fission upon bacterial infection, Proceedings of the National Academy of Sciences, vol.173, issue.4, pp.16003-16008, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791707

C. Castanier and D. Arnoult, Mitochondrial localization of viral proteins as a means to subvert host defense, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.4, pp.575-583, 2011.
DOI : 10.1016/j.bbamcr.2010.08.009

K. Onoguchi, Virus-Infection or 5???ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1, PLoS Pathogens, vol.3, issue.7, pp.1001012-54, 2010.
DOI : 10.1371/journal.ppat.1001012.g013

T. Koshiba, Mitochondrial Membrane Potential Is Required for MAVS-Mediated Antiviral Signaling, Science Signaling, vol.4, issue.158, pp.7-7, 2011.
DOI : 10.1126/scisignal.2001147

A. P. West, Mitochondria in innate immune responses, Nature Reviews Immunology, vol.278, issue.6, pp.389-402, 2011.
DOI : 10.1074/jbc.M210269200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281487

E. Dixit, Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity, Cell, vol.141, issue.4, pp.668-681, 2010.
DOI : 10.1016/j.cell.2010.04.018

URL : http://doi.org/10.1016/j.cell.2010.04.018

C. A. Hagmann, RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells, PLoS ONE, vol.200, issue.4, pp.62872-58, 2013.
DOI : 10.1371/journal.pone.0062872.s004

C. Odendall, Diverse intracellular pathogens activate type III interferon expression from peroxisomes, Nature Immunology, vol.5, issue.8, pp.717-726, 2014.
DOI : 10.1126/science.1179050

URL : https://hal.archives-ouvertes.fr/hal-01204372

P. Cohen, with Oligonucleotide Arrays, Journal of Biological Chemistry, vol.66, issue.15, pp.11181-11190, 2000.
DOI : 10.1091/mbc.9.5.993

D. N. Baldwin, A gene-expression program reflecting the innate immune response of cultured intestinal epithelial cells to infection by Listeria monocytogenes, Genome Biology, vol.4, issue.1, pp.2-61, 2003.
DOI : 10.1186/gb-2002-4-1-r2

R. L. Mccaffrey, A specific gene expression program triggered by Gram-positive bacteria in the cytosol, Proceedings of the National Academy of Sciences, vol.416, issue.6877, pp.11386-11391, 2004.
DOI : 10.1038/416190a

M. Lecuit, Functional Genomic Studies of the Intestinal Response to a Foodborne Enteropathogen in a Humanized Gnotobiotic Mouse Model, Journal of Biological Chemistry, vol.64, issue.20, pp.15065-15072, 2007.
DOI : 10.1038/353852a0

C. Archambaud, Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.16684-16689, 2012.
DOI : 10.1093/bioinformatics/19.2.185

URL : https://hal.archives-ouvertes.fr/hal-01003361

J. Eitel, Innate Immune Recognition and Inflammasome Activation in Listeria Monocytogenes Infection, Frontiers in Microbiology, vol.1, p.149, 2010.
DOI : 10.3389/fmicb.2010.00149

URL : http://doi.org/10.3389/fmicb.2010.00149

H. Bierne, Epigenetics and Bacterial Infections, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.12, pp.10272-010272, 2012.
DOI : 10.1101/cshperspect.a010272

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543073

J. Minàrovits, Microbe-induced epigenetic alterations in host cells: The coming era of patho-epigenetics of microbial infections, Acta Microbiologica et Immunologica Hungarica, vol.56, issue.1, pp.1-19, 2009.
DOI : 10.1556/AMicr.56.2009.1.1

M. A. Hamon and P. Cossart, Histone Modifications and Chromatin Remodeling during Bacterial Infections, Cell Host & Microbe, vol.4, issue.2, pp.100-109, 2008.
DOI : 10.1016/j.chom.2008.07.009

URL : http://doi.org/10.1016/j.chom.2008.07.009

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family of nucleomodulins, Cellular Microbiology, vol.71, issue.5, pp.622-633, 2012.
DOI : 10.1111/j.1365-2958.2008.06524.x

G. Felsenfeld and M. Groudine, Controlling the double helix, Nature, vol.16, issue.6921, pp.448-453, 2003.
DOI : 10.1101/gad.1001502

T. Jenuwein, A. , and C. D. , Translating the Histone Code, Science, vol.293, issue.5532, pp.1074-1080, 2001.
DOI : 10.1126/science.1063127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Hamon, Histone modifications induced by a family of bacterial toxins, Proceedings of the National Academy of Sciences, vol.282, issue.20, pp.13467-13472, 2007.
DOI : 10.1074/jbc.M610926200

M. A. Hamon and P. Cossart, K+ Efflux Is Required for Histone H3 Dephosphorylation by Listeria monocytogenes Listeriolysin O and Other Pore-Forming Toxins, Infection and Immunity, vol.79, issue.7, pp.2839-2846, 2011.
DOI : 10.1128/IAI.01243-10

URL : http://iai.asm.org/content/79/7/2839.full.pdf

H. A. Eskandarian, A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection, Science, vol.13, issue.8, p.1238858, 2013.
DOI : 10.1038/nprot.2011.355

URL : https://hal.archives-ouvertes.fr/pasteur-00853764

B. J. North, The Human Sir2 Ortholog, SIRT2, Is an NAD+-Dependent Tubulin Deacetylase, Molecular Cell, vol.11, issue.2, pp.437-444, 2003.
DOI : 10.1016/S1097-2765(03)00038-8

URL : http://doi.org/10.1016/s1097-2765(03)00038-8

O. Dussurget, The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons, Frontiers in Cellular and Infection Microbiology, vol.76, issue.450, p.50, 2014.
DOI : 10.1128/IAI.01251-07

URL : https://hal.archives-ouvertes.fr/pasteur-01145465

A. Lebreton, A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

H. Bierne, Human BAHD1 promotes heterochromatic gene silencing, Proceedings of the National Academy of Sciences, vol.84, issue.1, pp.13826-13831, 2009.
DOI : 10.1016/j.ygeno.2004.02.011

URL : https://hal.archives-ouvertes.fr/pasteur-00411478

A. Lebreton, Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA, mBio, vol.5, issue.1, pp.775-788, 2014.
DOI : 10.1128/mBio.00775-13

URL : https://hal.archives-ouvertes.fr/hal-01109386

T. Decker, The Yin and Yang of type I interferon activity in bacterial infection, Nature Reviews Immunology, vol.264, issue.9, pp.675-687, 2005.
DOI : 10.1016/j.it.2004.08.010

Y. Liu, Caenorhabditis elegans pathways that surveil and defend mitochondria, Nature, vol.6, issue.7496, pp.406-410, 2014.
DOI : 10.1021/cb200206w

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102179

E. Leitão, Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection, Cell Cycle, vol.13, p.83, 2014.

A. Samba-louaka, Listeria monocytogenes Dampens the DNA Damage Response, PLoS Pathogens, vol.156, issue.10, 2014.
DOI : 10.1371/journal.ppat.1004470.s006

URL : https://hal.archives-ouvertes.fr/pasteur-01078553

M. E. Pennini, Histone Methylation by NUE, a Novel Nuclear Effector of the Intracellular Pathogen Chlamydia trachomatis, PLoS Pathogens, vol.39, issue.7, pp.1000995-85, 2010.
DOI : 10.1371/journal.ppat.1000995.s001

URL : https://hal.archives-ouvertes.fr/pasteur-00531755

M. Rolando, Legionella pneumophila Effector RomA Uniquely Modifies Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial Replication, Cell Host & Microbe, vol.13, issue.4, pp.395-405, 2013.
DOI : 10.1016/j.chom.2013.03.004

URL : https://hal.archives-ouvertes.fr/pasteur-01336636

S. K. Anand and S. K. Tikoo, Viruses as Modulators of Mitochondrial Functions, Advances in Virology, vol.230, issue.4729, p.738794, 2013.
DOI : 10.1097/QAD.0b013e32805e8742

URL : http://doi.org/10.1155/2013/738794

M. L. Yarbrough, Viral Subversion of Nucleocytoplasmic Trafficking, Traffic, vol.99, issue.Pt 2, pp.127-140, 2014.
DOI : 10.1016/j.antiviral.2013.06.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910510

A. Galmiche, The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release, The EMBO Journal, vol.19, issue.23, pp.6361-6370, 2000.
DOI : 10.1093/emboj/19.23.6361

B. Kenny and M. Jepson, Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria, Cellular Microbiology, vol.13, issue.6, pp.579-590, 2000.
DOI : 10.1046/j.1365-2958.1998.00782.x

J. Nougayrède and M. S. Donnenberg, Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway, Cellular Microbiology, vol.66, issue.11, pp.1097-1111, 2004.
DOI : 10.1074/jbc.M204783200

M. Suzuki, Vibrio cholerae T3SS Effector VopE Modulates Mitochondrial Dynamics and Innate Immune Signaling by Targeting Miro GTPases, Cell Host & Microbe, vol.16, issue.5, pp.581-591, 2014.
DOI : 10.1016/j.chom.2014.09.015

URL : http://doi.org/10.1016/j.chom.2014.09.015

J. J. Rodríguez-herva, A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses, Cellular Microbiology, vol.60, issue.5, pp.669-681, 2012.
DOI : 10.1111/j.1365-313X.2009.04010.x

DOI : 10.1084/jem.136.5.1173

M. A. Horwitz, Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes, Journal of Experimental Medicine, vol.158, issue.4, pp.1319-1331, 1983.
DOI : 10.1084/jem.158.4.1319

A. Matsumoto, Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions, J Electron Microsc, vol.40, pp.356-363, 1991.

L. Pernas, Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response, PLoS Biology, vol.98, issue.4, pp.1001845-97, 2014.
DOI : 10.1371/journal.pbio.1001845.s008

H. D. Görtz and M. Wiemann, Route of infection of the bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum, European Journal of Protistology, vol.24, issue.2, pp.101-109, 1989.
DOI : 10.1016/S0932-4739(89)80037-9

S. B. Wolbach, Studies on Rocky Mountain spotted Fever, J Med Res, vol.41, pp.1-198, 1919.

K. Iwamasa, with causative agent of spotted fever group rickettsiosis in Japan, APMIS, vol.44, issue.1-6, pp.535-542, 1992.
DOI : 10.1111/j.1348-0421.1983.tb03587.x

M. Schrader, Shared components of mitochondrial and peroxisomal division, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.5-6, pp.531-541, 2006.
DOI : 10.1016/j.bbamcr.2006.01.004

URL : http://doi.org/10.1016/j.bbamcr.2006.01.004

M. Schröder, Endoplasmic reticulum stress responses, Cellular and Molecular Life Sciences, vol.65, issue.6, pp.862-894, 2008.
DOI : 10.1007/s00018-007-7383-5