E. G. Murray, R. A. Webb, M. B. Swann, C. G. Burn, M. L. Gray et al., A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.) Characteristics of a New Species of the Genus Listerella Obtained from Human Sources Listeria monocytogenes and listeric infections Listeriosis: a resurgent foodborne infection Requirement of thymus (T) lymphocytes for resistance to listeriosis Cellular resistance to infection Live-attenuated Listeriabased immunotherapy Pathogenesis and immunology of Listeria monocytogenes Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, J Pathol J Bacteriol Bacteriol Rev Clin Microbiol Infect J Exp Med J Exp Med Expert Rev Vaccines Pathol Biol Proc Natl Acad Sci, vol.29, issue.108, pp.407-446, 1926.

F. Stavru, C. Archambaud, and P. Cossart, Cell biology and immunology of Listeria monocytogenes infections: novel insights, Immunological Reviews, vol.69, issue.1, pp.160-84, 2011.
DOI : 10.1128/IAI.69.3.1795-1807.2001

E. Milohanic, Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA, Molecular Microbiology, vol.171, issue.23, pp.1613-1638, 2003.
DOI : 10.1128/jb.171.5.2795-2802.1989

P. Severino, Comparative Transcriptome Analysis of Listeria monocytogenes Strains of the Two Major Lineages Reveals Differences in Virulence, Cell Wall, and Stress Response, Applied and Environmental Microbiology, vol.73, issue.19, pp.6078-88, 2007.
DOI : 10.1128/AEM.02730-06

A. Toledo-arana, The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.99, issue.7249, pp.950-956, 2009.
DOI : 10.1016/S1438-4221(00)80086-7

P. Glaser, Comparative genomics of Listeria species, Science, vol.294, pp.849-52, 2001.

M. A. Mraheil, The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages, Nucleic Acids Research, vol.39, issue.10, pp.4235-4283, 2011.
DOI : 10.1093/nar/gkr033

M. J. Kazmierczak, M. Wiedmann, and K. J. Boor, Contributions of Listeria monocytogenes ??B and PrfA to expression of virulence and stress response genes during extra- and intracellular growth, Microbiology, vol.152, issue.6, pp.1827-1865, 2006.
DOI : 10.1099/mic.0.28758-0

A. Camejo, In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection, PLoS Pathogens, vol.9, issue.5, 2009.
DOI : 10.1371/journal.ppat.1000449.s011

O. Wurtzel, Comparative transcriptomics of pathogenic and non-pathogenic Listeria species, Molecular Systems Biology, vol.270, p.583, 2012.
DOI : 10.1093/nar/gkm951

S. Behrens, Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs, PLoS ONE, vol.16, issue.2, p.83979, 2014.
DOI : 10.1371/journal.pone.0083979.s007

H. F. Oliver, Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs, BMC Genomics, vol.10, issue.1, p.641, 2009.
DOI : 10.1186/1471-2164-10-641

C. Bécavin, Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity, mBio, vol.5, issue.2, pp.969-983, 2014.
DOI : 10.1128/mBio.00969-14

J. R. Mellin, T. Tiensuu, C. Becavin, E. Gouin, J. Johansson et al., A riboswitch-regulated antisense RNA in Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.109, issue.41, pp.13132-13139, 2013.
DOI : 10.1073/pnas.1212809109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740843

E. Loh, A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes, Cell, vol.139, issue.4, pp.770-779, 2009.
DOI : 10.1016/j.cell.2009.08.046

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes, Cell, vol.110, issue.5, pp.551-61, 2002.
DOI : 10.1016/S0092-8674(02)00905-4

N. Sesto, O. Wurtzel, C. Archambaud, R. Sorek, and P. Cossart, The excludon: a new concept in bacterial antisense RNA-mediated gene regulation, Nature Reviews Microbiology, vol.6, issue.2, pp.75-82, 2013.
DOI : 10.1038/nrmicro1932

A. Hatoum-aslan and L. A. Marraffini, Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens, Current Opinion in Microbiology, vol.17, pp.82-90, 2014.
DOI : 10.1016/j.mib.2013.12.001

R. Louwen, R. H. Staals, H. P. Endtz, P. Van-baarlen, and J. Van-der-oost, The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria, Microbiology and Molecular Biology Reviews, vol.78, issue.1, pp.74-88, 2014.
DOI : 10.1128/MMBR.00039-13

N. Sesto, A PNPase Dependent CRISPR System in Listeria, PLoS Genetics, vol.8, issue.1, 2014.
DOI : 10.1371/journal.pgen.1004065.s013

URL : https://hal.archives-ouvertes.fr/pasteur-01145428

J. Pizarro-cerda, S. Sousa, and P. Cossart, Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells, Comptes Rendus Biologies, vol.327, issue.2, pp.115-138, 2004.
DOI : 10.1016/j.crvi.2003.11.007

L. G. Tilney and D. A. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, The Journal of Cell Biology, vol.109, issue.4, pp.1597-608, 1989.
DOI : 10.1083/jcb.109.4.1597

P. Cossart and A. Helenius, Endocytosis of Viruses and Bacteria, Cold Spring Harbor Perspectives in Biology, vol.6, issue.8, p.16972, 2014.
DOI : 10.1101/cshperspect.a016972

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107984

J. Pizarro-cerda, A. Kuhbacher, and P. Cossart, Entry of Listeria monocytogenes in Mammalian Epithelial Cells: An Updated View, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.11, 2012.
DOI : 10.1101/cshperspect.a010009

P. Cossart, Actin-based motility of pathogens: the Arp2/3 complex is a central player. Microreview, Cellular Microbiology, vol.135, issue.3, pp.195-205, 2000.
DOI : 10.1016/S0960-9822(99)80243-7

S. D. Conner and S. L. Schmid, Regulated portals of entry into the cell, Nature, vol.277, issue.6927, pp.37-44, 2003.
DOI : 10.1091/mbc.12.9.2578

A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, S. C. Harrison et al., Molecular model for a complete clathrin lattice from electron cryomicroscopy, Nature, vol.50, issue.7017, pp.573-582, 2004.
DOI : 10.1006/jmbi.1993.1626

M. Ehrlich, W. Boll, A. Van-oijen, R. Hariharan, K. Chandran et al., Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits, Cell, vol.118, issue.5, pp.591-605, 2004.
DOI : 10.1016/j.cell.2004.08.017

URL : http://doi.org/10.1016/j.cell.2004.08.017

E. Veiga and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nature Cell Biology, vol.16, issue.9, pp.894-900, 2005.
DOI : 10.1046/j.1365-2958.1997.4621825.x

E. Veiga and P. Cossart, The role of clathrin-dependent endocytosis in bacterial internalization, Trends in Cell Biology, vol.16, issue.10, pp.499-504, 2006.
DOI : 10.1016/j.tcb.2006.08.005

J. Pizarro-cerda, M. Bonazzi, and P. Cossart, Clathrin-mediated endocytosis: What works for small, also works for big, BioEssays, vol.418, issue.Pt 12, pp.496-504, 2010.
DOI : 10.1002/bies.200900172

E. Veiga, Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection, Cell Host & Microbe, vol.2, issue.5, pp.340-51, 2007.
DOI : 10.1016/j.chom.2007.10.001

URL : http://doi.org/10.1016/j.chom.2007.10.001

M. Bonazzi, Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization, The Journal of Cell Biology, vol.195, issue.3, pp.525-561, 2011.
DOI : 10.1091/mbc.E04-09-0774

M. Bonazzi, A. Kühbacher, A. Toledo-arana, A. Mallet, L. Vasudevan et al., A Common Clathrin-Mediated Machinery Co-ordinates Cell-Cell Adhesion and Bacterial Internalization, Traffic, vol.4, issue.12, pp.1653-66, 2012.
DOI : 10.1091/mbc.4.6.647

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760411

J. Pizarro-cerda and P. Cossart, Subversion of phosphoinositide metabolism by intracellular bacterial pathogens, Nature Cell Biology, vol.263, issue.11, pp.1026-1059, 2004.
DOI : 10.1016/j.cub.2003.09.054

H. Bierne, H. Miki, M. Innocenti, G. Scita, F. B. Gertler et al., WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor, Journal of Cell Science, vol.118, issue.7, pp.1537-1584, 2005.
DOI : 10.1242/jcs.02285

K. Ireton, B. Payrastre, H. Chap, W. Ogawa, H. Sakaue et al., A Role for Phosphoinositide 3-Kinase in Bacterial Invasion, Science, vol.274, issue.5288, pp.780-782, 1996.
DOI : 10.1126/science.274.5288.780

S. Seveau, T. N. Tham, B. Payrastre, A. D. Hoppe, J. A. Swanson et al., A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway, Cellular Microbiology, vol.11, issue.3, pp.790-803, 2007.
DOI : 10.1126/science.1068539

A. Kühbacher, D. Dambournet, A. Echard, P. Cossart, and J. Pizarro-cerda, Infection, Journal of Biological Chemistry, vol.41, issue.16, pp.13128-13164, 2012.
DOI : 10.1038/emboj.2011.60

J. Pizarro-cerda, R. Jonquieres, E. Gouin, J. Vandekerckhove, J. Garin et al., Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes, Cellular Microbiology, vol.59, issue.2, pp.101-116, 2002.
DOI : 10.1038/35052055

S. Mostowy, S. Janel, C. Forestier, C. Roduit, S. Kasas et al., A Role for Septins in the Interaction between the Listeria monocytogenes Invasion Protein InlB and the Met Receptor, Biophysical Journal, vol.100, issue.8, pp.1949-59, 2011.
DOI : 10.1016/j.bpj.2011.02.040

S. Mostowy and P. Cossart, infection: Clathrin and septins as new players in the game, Cell Motility and the Cytoskeleton, vol.129, issue.10, pp.816-839, 2009.
DOI : 10.1074/jbc.M900231200

S. Mostowy, Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures, Cell Host & Microbe, vol.8, issue.5, pp.433-477, 2010.
DOI : 10.1016/j.chom.2010.10.009

URL : https://hal.archives-ouvertes.fr/pasteur-01376115

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima et al., Escape of Intracellular Shigella from Autophagy, Science, vol.307, issue.5710, pp.727-758, 2005.
DOI : 10.1126/science.1106036

Y. Yoshikawa, Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nature Cell Biology, vol.113, issue.10, pp.1233-1273, 2009.
DOI : 10.1038/ni.1634

L. Dortet, S. Mostowy, A. Samba-louaka, E. Gouin, M. A. Nahori et al., Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy, PLoS Pathogens, vol.77, issue.8, 2011.
DOI : 10.1371/journal.ppat.1002168.s009

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.22, pp.183-94, 2012.
DOI : 10.1016/j.cub.2011.11.034

J. Mounier, A. Ryter, M. Coquis-rondon, and P. J. Sansonetti, Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2, Infect Immun, vol.58, pp.1048-58, 1990.

M. Van-troys, The actin propulsive machinery: The proteome of Listeria monocytogenes tails, Biochemical and Biophysical Research Communications, vol.375, issue.2, pp.194-203, 2008.
DOI : 10.1016/j.bbrc.2008.07.152

M. Jasnin, S. Asano, E. Gouin, R. Hegerl, J. M. Plitzko et al., Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails, Proceedings of the National Academy of Sciences, vol.89, issue.2, pp.20521-20527, 2013.
DOI : 10.1529/biophysj.104.055822

V. Achard, J. L. Martiel, A. Michelot, C. Guerin, A. C. Reymann et al., A ???Primer???-Based Mechanism Underlies Branched Actin Filament Network Formation and Motility, Current Biology, vol.20, issue.5, pp.423-431, 2010.
DOI : 10.1016/j.cub.2009.12.056

URL : https://hal.archives-ouvertes.fr/hal-00469496

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proceedings of the National Academy of Sciences, vol.580, issue.9, pp.3612-3619, 2011.
DOI : 10.1016/j.febslet.2006.03.057

URL : http://www.pnas.org/content/108/9/3612.full.pdf

F. Stavru, A. E. Palmer, C. Wang, R. J. Youle, and P. Cossart, Atypical mitochondrial fission upon bacterial infection, Proceedings of the National Academy of Sciences, vol.173, issue.4, pp.16003-16011, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791707

M. A. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

D. Ribet, Listeria monocytogenes impairs SUMOylation for efficient infection, Nature, vol.22, issue.7292, pp.1192-1197, 2010.
DOI : 10.1038/nature08963

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627292

A. Samba-louaka, F. Stavru, and P. Cossart, Role for Telomerase in Listeria monocytogenes Infection, Infection and Immunity, vol.80, issue.12, pp.4257-63, 2012.
DOI : 10.1128/IAI.00614-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497413

R. L. Mccaffrey, P. Fawcett, M. O-'riordan, K. D. Lee, E. A. Havell et al., A specific gene expression program triggered by Gram-positive bacteria in the cytosol, Proceedings of the National Academy of Sciences, vol.416, issue.6877, pp.11386-91, 2004.
DOI : 10.1038/416190a

D. N. Baldwin, V. Vanchinathan, P. O. Brown, and J. A. Theriot, A gene-expression program reflecting the innate immune response of cultured intestinal epithelial cells to infection by Listeria monocytogenes, Genome Biology, vol.4, issue.1, p.2, 2003.
DOI : 10.1186/gb-2002-4-1-r2

H. A. Eskandarian, F. Impens, M. A. Nahori, G. Soubigou, J. Y. Coppee et al., A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection, Science, vol.13, issue.8, 2013.
DOI : 10.1038/nprot.2011.355

URL : https://hal.archives-ouvertes.fr/pasteur-00853764

M. Lecuit, J. L. Sonnenburg, P. Cossart, and J. I. Gordon, Functional Genomic Studies of the Intestinal Response to a Foodborne Enteropathogen in a Humanized Gnotobiotic Mouse Model, Journal of Biological Chemistry, vol.64, issue.20, pp.15065-72, 2007.
DOI : 10.1038/353852a0

J. A. Best, D. A. Blair, J. Knell, E. Yang, V. Mayya et al., Transcriptional A c c e p t e d m a n u s c r i p t , p o s t -p r i n t v e r s i o n Cossart and Lebreton Trends, Cell Biology, 2013.

C. Archambaud, Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.16684-16693, 2012.
DOI : 10.1093/bioinformatics/19.2.185

URL : https://hal.archives-ouvertes.fr/hal-01003361

C. Archambaud, The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection, mBio, vol.4, issue.6, pp.707-720, 2013.
DOI : 10.1128/mBio.00707-13

URL : https://hal.archives-ouvertes.fr/hal-01350904

O. Dussurget, H. Bierne, and P. Cossart, The bacterial pathogen and the interferon family: type I, type II and type III interferons, Front Cell Infect Microbiol, vol.4, p.50, 2014.
DOI : 10.3389/fcimb.2014.00050

URL : https://hal.archives-ouvertes.fr/pasteur-01145465

K. Parvatiyar, The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response, Nature Immunology, vol.13, issue.12, pp.1155-61, 2012.
DOI : 10.1038/nm1246

J. J. Woodward, A. T. Iavarone, and D. A. Portnoy, c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response, Science, vol.206, issue.9, pp.1703-1708, 2010.
DOI : 10.1084/jem.20082874

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156580

Z. Abdullah, by sensing secreted bacterial nucleic acids, The EMBO Journal, vol.9, issue.21, pp.4153-64, 2012.
DOI : 10.1038/ni.1634

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492734

C. A. Hagmann, RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells, PLoS ONE, vol.200, issue.4, 2013.
DOI : 10.1371/journal.pone.0062872.s004

C. Aubry, Both TLR2 and TRIF Contribute to Interferon-?? Production during Listeria Infection, PLoS ONE, vol.174, issue.3, p.33299, 2012.
DOI : 10.1371/journal.pone.0033299.s002

URL : http://doi.org/10.1371/journal.pone.0033299

E. Kernbauer, V. Maier, I. Rauch, M. Muller, and T. Decker, Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes, PLoS ONE, vol.4, issue.6, p.65007, 2013.
DOI : 10.1371/journal.pone.0065007.s001

O. Connell and R. M. , Infection, The Journal of Experimental Medicine, vol.151, issue.4, pp.437-482, 2004.
DOI : 10.1073/pnas.091096998

URL : https://hal.archives-ouvertes.fr/inserm-01373710

F. Pontiroli, The Timing of IFN?? Production Affects Early Innate Responses to Listeria monocytogenes and Determines the Overall Outcome of Lethal Infection, PLoS ONE, vol.7, issue.8, p.43455, 2012.
DOI : 10.1371/journal.pone.0043455.s005

J. A. Carrero and E. R. Unanue, Mechanisms and Immunological Effects of Apoptosis Caused by Listeria Monocytogenes, Adv Immunol, vol.113, pp.157-74, 2012.
DOI : 10.1016/B978-0-12-394590-7.00001-4

M. Rayamajhi, J. Humann, S. Kearney, K. K. Hill, and L. L. Lenz, Antagonistic crosstalk between type I and II interferons and increased host susceptibility to bacterial infections, Virulence, vol.119, issue.5, pp.418-440, 2010.
DOI : 10.1038/nm.2110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957886

A. Lebreton, A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1340, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

H. Bierne, Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta, PLoS ONE, vol.35, issue.6, p.39080, 2012.
DOI : 10.1371/journal.pone.0039080.t001

URL : https://hal.archives-ouvertes.fr/pasteur-00750162

C. Aubry, OatA, a Peptidoglycan O-Acetyltransferase Involved in Listeria monocytogenes Immune Escape, Is Critical for Virulence, The Journal of Infectious Diseases, vol.204, issue.5, pp.731-771, 2011.
DOI : 10.1093/infdis/jir396

URL : https://hal.archives-ouvertes.fr/pasteur-01402076

I. G. Boneca, evasion from the host innate immune system, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.997-1002, 2007.
DOI : 10.1084/jem.174.2.459

URL : https://hal.archives-ouvertes.fr/pasteur-00139188

E. Gouin, The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I??B kinase subunit IKK??, Proceedings of the National Academy of Sciences, vol.9, issue.10, pp.17333-17341, 2010.
DOI : 10.1016/j.micinf.2007.05.005

H. Bierne, M. Hamon, and P. Cossart, Epigenetics and Bacterial Infections, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.12, 2012.
DOI : 10.1101/cshperspect.a010272

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543073

M. A. Hamon, E. Batsche, B. Regnault, T. N. Tham, S. Seveau et al., Histone modifications induced by a family of bacterial toxins, Proceedings of the National Academy of Sciences, vol.282, issue.20, pp.13467-72, 2007.
DOI : 10.1074/jbc.M610926200

M. A. Hamon and P. Cossart, K+ Efflux Is Required for Histone H3 Dephosphorylation by Listeria monocytogenes Listeriolysin O and Other Pore-Forming Toxins, Infection and Immunity, vol.79, issue.7, pp.2839-2885, 2011.
DOI : 10.1128/IAI.01243-10

URL : http://iai.asm.org/content/79/7/2839.full.pdf

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family of nucleomodulins, Cellular Microbiology, vol.71, issue.5, pp.622-655, 2012.
DOI : 10.1111/j.1365-2958.2008.06524.x

A. Lebreton, V. Job, M. Ragon, L. Monnier, A. Dessen et al., Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA, mBio, vol.5, issue.1, pp.775-788, 2014.
DOI : 10.1128/mBio.00775-13

URL : https://hal.archives-ouvertes.fr/hal-01109386

H. Bierne, Human BAHD1 promotes heterochromatic gene silencing, Proceedings of the National Academy of Sciences, vol.84, issue.1, pp.13826-13857, 2009.
DOI : 10.1016/j.ygeno.2004.02.011

URL : https://hal.archives-ouvertes.fr/pasteur-00411478

L. Radoshevich, H. Bierne, D. Ribet, and P. Cossart, The New Microbiology: A conference at the Institut de France, Comptes Rendus Biologies, vol.335, issue.8, pp.514-523, 2012.
DOI : 10.1016/j.crvi.2012.07.005