O. Danot, E. Marquenet, D. Vidal-ingigliardi, and E. Richet, Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins, Structure, vol.17, issue.2, pp.172-182, 2009.
DOI : 10.1016/j.str.2009.01.001

D. D. Leipe, E. V. Koonin, and L. Aravind, STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer, Journal of Molecular Biology, vol.343, issue.1, pp.1-28, 2004.
DOI : 10.1016/j.jmb.2004.08.023

W. I. Tameling, J. H. Vossen, M. Albrecht, T. Lengauer, J. A. Berden et al., Mutations in the NB-ARC Domain of I-2 That Impair ATP Hydrolysis Cause Autoactivation, PLANT PHYSIOLOGY, vol.140, issue.4, pp.1233-1245, 2006.
DOI : 10.1104/pp.105.073510

T. F. Reubold, S. Wohlgemuth, and S. Eschenburg, Crystal Structure of Full-Length Apaf-1: How the Death Signal Is Relayed in the Mitochondrial Pathway of Apoptosis, Structure, vol.19, issue.8, pp.1074-1083, 2011.
DOI : 10.1016/j.str.2011.05.013

S. J. Riedl, W. Li, Y. Chao, R. Schwarzenbacher, and Y. Shi, Structure of the apoptotic protease-activating factor 1 bound to ADP, Nature, vol.11, issue.7035, pp.926-933, 2005.
DOI : 10.1107/S0021889891004399

Z. Hu, C. Yan, P. Liu, Z. Huang, R. Ma et al., Crystal Structure of NLRC4 Reveals Its Autoinhibition Mechanism, Science, vol.341, issue.6142, pp.172-175, 2013.
DOI : 10.1126/science.1236381

G. Van-ooijen, G. Mayr, M. M. Kasiem, M. Albrecht, B. J. Cornelissen et al., Structure-function analysis of the NB-ARC domain of plant disease resistance proteins, Journal of Experimental Botany, vol.59, issue.6, pp.1383-1397, 2008.
DOI : 10.1093/jxb/ern045

S. Qi, Y. Pang, Q. Hu, Q. Liu, H. Li et al., Crystal Structure of the Caenorhabditis elegans Apoptosome Reveals an Octameric Assembly of CED-4, Cell, vol.141, issue.3, pp.446-457, 2010.
DOI : 10.1016/j.cell.2010.03.017

S. Yuan, X. Yu, J. M. Asara, J. E. Heuser, S. J. Ludtke et al., The Holo-Apoptosome: Activation of Procaspase-9 and Interactions with Caspase-3, Structure, vol.19, issue.8, pp.1084-1096, 2011.
DOI : 10.1016/j.str.2011.07.001

S. Yuan, X. Yu, M. Topf, L. Dorstyn, S. Kumar et al., Structure of the Drosophila Apoptosome at 6.9???? Resolution, Structure, vol.19, issue.1, pp.128-140, 2011.
DOI : 10.1016/j.str.2010.10.009

E. Marquenet and E. Richet, How Integration of Positive and Negative Regulatory Signals by a STAND Signaling Protein Depends on ATP Hydrolysis, Molecular Cell, vol.28, issue.2, pp.187-199, 2007.
DOI : 10.1016/j.molcel.2007.08.014

E. Marquenet and E. Richet, Conserved Motifs Involved in ATP Hydrolysis by MalT, a Signal Transduction ATPase with Numerous Domains from Escherichia coli, Journal of Bacteriology, vol.192, issue.19, pp.5181-5191, 2010.
DOI : 10.1128/JB.00522-10

T. F. Reubold, S. Wohlgemuth, and S. Eschenburg, A New Model for the Transition of APAF-1 from Inactive Monomer to Caspase-activating Apoptosome, Journal of Biological Chemistry, vol.284, issue.47, pp.32717-32724, 2009.
DOI : 10.1074/jbc.M109.014027

P. Liu, O. Danot, and E. Richet, A dual role for the inducer in signalling by MalT, a signal transduction ATPase with numerous domains (STAND), Molecular Microbiology, vol.52, issue.6, pp.1309-1323, 2013.
DOI : 10.1111/mmi.12434

J. Ade, B. J. Deyoung, C. Golstein, and R. W. Innes, Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2531-2536, 2007.
DOI : 10.1073/pnas.0608779104

Q. Bao, W. Lu, J. D. Rabinowitz, and Y. Shi, Calcium Blocks Formation of Apoptosome by Preventing Nucleotide Exchange in Apaf-1, Molecular Cell, vol.25, issue.2, pp.181-192, 2007.
DOI : 10.1016/j.molcel.2006.12.013

J. L. Poyet, S. M. Srinivasula, M. Tnani, M. Razmara, T. Fernandes-alnemri et al., Identification of Ipaf, a Human Caspase-1-activating Protein Related to Apaf-1, Journal of Biological Chemistry, vol.276, issue.30, pp.28309-28313, 2001.
DOI : 10.1074/jbc.C100250200

T. Tanabe, M. Chamaillard, Y. Ogura, L. Zhu, S. Qiu et al., Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition, The EMBO Journal, vol.23, issue.7, pp.1587-1597, 2004.
DOI : 10.1038/sj.emboj.7600175

J. L. Hsu, H. L. Peng, and H. Y. Chang, The ATP-binding motif in AcoK is required for regulation of acetoin catabolism in Klebsiella pneumoniae CG43, Biochemical and Biophysical Research Communications, vol.376, issue.1, pp.121-127, 2008.
DOI : 10.1016/j.bbrc.2008.08.103

A. F. Bent and D. Mackey, Genes: The New Paradigm and a Lifetime Supply of Questions, Annual Review of Phytopathology, vol.45, issue.1, pp.399-436, 2007.
DOI : 10.1146/annurev.phyto.45.062806.094427

S. J. Riedl and G. S. Salvesen, The apoptosome: signalling platform of cell death, Nature Reviews Molecular Cell Biology, vol.156, issue.5, pp.405-413, 2007.
DOI : 10.1038/nrm2153

S. Yuan and C. W. Akey, Apoptosome Structure, Assembly, and Procaspase Activation, Structure, vol.21, issue.4, pp.501-515, 2013.
DOI : 10.1016/j.str.2013.02.024

URL : http://doi.org/10.1016/j.str.2013.02.024

E. Larquet, V. Schreiber, N. Boisset, and E. Richet, Oligomeric Assemblies of the Escherichia coli MalT Transcriptional Activator Revealed by Cryo-electron Microscopy and Image Processing, Journal of Molecular Biology, vol.343, issue.5, pp.1159-1169, 2004.
DOI : 10.1016/j.jmb.2004.09.010

URL : https://hal.archives-ouvertes.fr/hal-00086710

V. Schreiber and E. Richet, Self-association of the Escherichia coliTranscription Activator MalT in the Presence of Maltotriose and ATP, Journal of Biological Chemistry, vol.274, issue.47, pp.33220-33226, 1999.
DOI : 10.1074/jbc.274.47.33220

C. Steegborn, O. Danot, R. Huber, and T. Clausen, Crystal Structure of Transcription Factor MalT Domain III, Structure, vol.9, issue.11, pp.1051-1060, 2001.
DOI : 10.1016/S0969-2126(01)00665-7

O. Danot, The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor, Molecular Microbiology, vol.68, issue.3, pp.628-641, 2010.
DOI : 10.1111/j.1365-2958.2010.07237.x

URL : https://hal.archives-ouvertes.fr/hal-00552641

O. Danot, D. Vidal-ingigliardi, and O. Raibaud, Two Amino Acid Residues from the DNA-binding Domain of MalT Play a Crucial Role in Transcriptional Activation, Journal of Molecular Biology, vol.262, issue.1, pp.1-11, 1996.
DOI : 10.1006/jmbi.1996.0493

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

S. ¨-oding, J. Biegert, A. Lupas, and A. N. , The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Research, vol.33, issue.Web Server, pp.244-248, 2005.
DOI : 10.1093/nar/gki408

Y. W. Ebright, Y. Chen, Y. Kim, and R. H. Ebright, Radioiodinatable, Cleavable, Photoactivatible Cross-Linking Agent, Bioconjugate Chemistry, vol.7, issue.3, pp.380-384, 1996.
DOI : 10.1021/bc9600168

A. Schlegel, O. Danot, E. Richet, T. Ferenci, and W. Boos, The N Terminus of the Escherichia coli Transcription Activator MalT Is the Domain of Interaction with MalY, Journal of Bacteriology, vol.184, issue.11, pp.3069-3077, 2002.
DOI : 10.1128/JB.184.11.3069-3077.2002

V. Schreiber, C. Steegborn, T. Clausen, W. Boos, and E. Richet, A new mechanism for the control of a prokaryotic transcriptional regulator: antagonistic binding of positive and negative effectors, Molecular Microbiology, vol.177, issue.4, pp.765-776, 2000.
DOI : 10.1006/jmbi.1994.1294

O. Danot, A complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family, Proceedings of the National Academy of Sciences, vol.98, issue.2, pp.435-440, 2001.
DOI : 10.1073/pnas.98.2.435

J. S. Richardson, The Anatomy and Taxonomy of Protein Structure, Adv. Protein Chem, vol.34, pp.167-339, 1981.
DOI : 10.1016/S0065-3233(08)60520-3

B. Dardonville and O. Raibaud, Characterization of malT mutants that constitutively activate the maltose regulon of Escherichia coli., Journal of Bacteriology, vol.172, issue.4, pp.1846-1852, 1990.
DOI : 10.1128/jb.172.4.1846-1852.1990

L. Notley-mcrobb and T. Ferenci, The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli, Environmental Microbiology, vol.198, issue.1, pp.45-52, 1999.
DOI : 10.1038/42696

M. Hong, S. I. Yoon, and I. A. Wilson, Structure and Functional Characterization of the RNA-Binding Element of the NLRX1 Innate Immune Modulator, Immunity, vol.36, issue.3, pp.337-347, 2012.
DOI : 10.1016/j.immuni.2011.12.018

T. F. Reubold, G. Hahne, S. Wohlgemuth, and S. Eschenburg, Crystal structure of the leucine-rich repeat domain of the NOD-like receptor NLRP1: Implications for binding of muramyl dipeptide, FEBS Letters, vol.19, issue.18, pp.3327-3332, 2014.
DOI : 10.1016/j.febslet.2014.07.017

J. L. Tenthorey, E. M. Kofoed, M. D. Daugherty, H. S. Malik, and R. E. Vance, Molecular Basis for Specific Recognition of Bacterial Ligands by NAIP/NLRC4 Inflammasomes, Molecular Cell, vol.54, issue.1, pp.17-29, 2014.
DOI : 10.1016/j.molcel.2014.02.018

A. Bej, B. R. Sahoo, B. Swain, M. Basu, P. Jayasankar et al., LRRsearch: An asynchronous server-based application for the prediction of leucine-rich repeat motifs and an integrative database of NOD-like receptors, Computers in Biology and Medicine, vol.53, pp.164-170, 2014.
DOI : 10.1016/j.compbiomed.2014.07.016

E. J. Slootweg, L. N. Spiridon, J. Roosien, P. Butterbach, R. Pomp et al., Structural Determinants at the Interface of the ARC2 and Leucine-Rich Repeat Domains Control the Activation of the Plant Immune Receptors Rx1 and Gpa2, PLANT PHYSIOLOGY, vol.162, issue.3, pp.1510-1528, 2013.
DOI : 10.1104/pp.113.218842

B. Faustin, Y. Chen, D. Zhai, G. Le-negrate, L. Lartigue et al., Mechanism of Bcl-2 and Bcl-XL inhibition of NLRP1 inflammasome: Loop domain-dependent suppression of ATP binding and oligomerization, Proceedings of the National Academy of Sciences, vol.106, issue.10, pp.3935-3940, 2009.
DOI : 10.1073/pnas.0809414106

N. Joly, A. Bohm, W. Boos, and E. Richet, MalK, the ATP-binding Cassette Component of the Escherichia coli Maltodextrin Transporter, Inhibits the Transcriptional Activator MalT by Antagonizing Inducer Binding, Journal of Biological Chemistry, vol.279, issue.32, pp.33123-33130, 2004.
DOI : 10.1074/jbc.M403615200

N. Joly, O. Danot, A. Schlegel, W. Boos, and E. Richet, The Aes Protein Directly Controls the Activity of MalT, the Central Transcriptional Activator of the Escherichia coliMaltose Regulon, Journal of Biological Chemistry, vol.277, issue.19, pp.16606-16613, 2002.
DOI : 10.1074/jbc.M200991200

S. Yuan, M. Topf, T. F. Reubold, S. Eschenburg, and C. W. Akey, Changes in Apaf-1 Conformation That Drive Apoptosome Assembly, Biochemistry, vol.52, issue.13, pp.2319-2327, 2013.
DOI : 10.1021/bi301721g

V. Malhotra, L. T. Arteaga-cortes, G. Clay, and J. E. Clark-curtiss, Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation, Microbiology, vol.156, issue.9, pp.2829-2841, 2010.
DOI : 10.1099/mic.0.040675-0

V. Malhotra, B. P. Okon, and J. E. Clark-curtiss, Mycobacterium tuberculosis Protein Kinase K Enables Growth Adaptation through Translation Control, Journal of Bacteriology, vol.194, issue.16, pp.4184-4196, 2012.
DOI : 10.1128/JB.00585-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416233

S. A. Jones, M. Jorgensen, F. Z. Chowdhury, R. Rodgers, J. Hartline et al., Glycogen and Maltose Utilization by Escherichia coli O157:H7 in the Mouse Intestine, Infection and Immunity, vol.76, issue.6, pp.2531-2540, 2008.
DOI : 10.1128/IAI.00096-08

D. E. Chang, D. J. Smalley, D. L. Tucker, M. P. Leatham, W. E. Norris et al., Carbon nutrition of Escherichia coli in the mouse intestine, Proceedings of the National Academy of Sciences, vol.101, issue.19, pp.7427-7432, 2004.
DOI : 10.1073/pnas.0307888101