B. De-paepe, D. Bleecker, and J. , Cytokines and chemokines as regulators of skeletal 524 muscle inflammation: presenting the case of Duchenne muscular dystrophy, Mediators Inflamm, vol.2013, p.525540370, 2013.

J. Ennen, M. Verma, and A. Asakura, Vascular-targeted therapies for Duchenne muscular 527 dystrophy, p.9, 2013.

Y. Shimizu-motohashi and A. Asakura, Angiogenesis as a novel therapeutic strategy for 529

W. Engel and R. Hawley, Focal lesions of muscle in peripheral vascular disease, Journal of Neurology, vol.27, issue.3, pp.161-168, 1977.
DOI : 10.1007/BF00312474

T. Rando, Role of nitric oxide in the pathogenesis of muscular dystrophies: A ?two hit? hypothesis of the cause of muscle necrosis, Microscopy Research and Technique, vol.24, issue.4, pp.223-235, 2001.
DOI : 10.1002/jemt.1172

J. Koehler, Blood vessel structure in Duchenne muscular dystrophy. I. Light and electron microscopic observations in resting muscle, Neurology, vol.27, issue.9, pp.861-868, 1977.
DOI : 10.1212/WNL.27.9.861

W. Bradley, O. Brien, M. Walder, D. Murchison, D. Johnson et al., Failure to Confirm a Vascular Cause of Muscular Dystrophy, Archives of Neurology, vol.32, issue.7, pp.466-473, 1975.
DOI : 10.1001/archneur.1975.00490490070007

B. Gudrun, G. Andrew, G. Boysen, and A. Engel, Effects of microembolization on the 540 skeletal muscle blood flow. A critique of the microvascular occlusion model of 541

I. Desguerre, M. Mayer, F. Leturcq, J. Barbet, R. Gherardi et al., Endomysial 545 fibrosis in Duchenne muscular dystrophy: a marker of poor outcome associated with 27

C. Baligand, H. Gilson, J. Menard, O. Schakman, C. Wary et al., Functional assessment of skeletal muscle in intact mice lacking myostatin by 571 concurrent NMR imaging and spectroscopy, Gene Ther, vol.17, pp.570328-337, 2010.

J. Raynaud, S. Duteil, J. Vaughan, F. Hennel, C. Wary et al., Determination of skeletal muscle perfusion using arterial spin labeling NMRI: Validation by comparison with venous occlusion plethysmography, Magnetic Resonance in Medicine, vol.41, issue.2, pp.573305-311, 2001.
DOI : 10.1002/mrm.1192

D. Taylor, P. Bore, P. Styles, D. Gadian, and G. Radda, Bioenergetics of intact human 577 muscle. A 31P nuclear magnetic resonance study, Mol Biol Med, vol.1, pp.77-94, 1983.

R. Hepple, A New Measurement of Tissue Capillarity: The Capillary-to-Fibre Perimeter Exchange Index, Canadian Journal of Applied Physiology, vol.22, issue.1, pp.11-22, 1997.
DOI : 10.1139/h97-002

M. Wanjare, S. Kusuma, and S. Gerecht, Perivascular cells in blood vessel regeneration, Biotechnology Journal, vol.49, issue.4, p.582
DOI : 10.1002/biot.201200199

Y. Bassaglia, V. Shinin, S. Tajbakhsh, and C. Bnd, others: Muscle satellite cells and 585 endothelial cells: close neighbors and privileged partners, Mol Biol Cell, vol.586, issue.18, pp.1397-1409, 2007.

M. Palladino, I. Gatto, V. Neri, S. Straino, R. Smith et al., Angiogenic Impairment of the Vascular Endothelium: A Novel Mechanism and Potential Therapeutic Target in Muscular Dystrophy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.33, issue.12, pp.2867-2876, 2013.
DOI : 10.1161/ATVBAHA.112.301172

P. Clifford, Vasodilatory mechanisms in contracting skeletal muscle, Journal of Applied Physiology, vol.97, issue.1, pp.393-403, 1985.
DOI : 10.1152/japplphysiol.00179.2004

D. Lowe and A. Asakura, Flt-1 haploinsufficiency ameliorates muscular dystrophy 620 phenotype by developmentally increased vasculature in mdx mice, Hum Mol Genet, vol.621, issue.19, pp.4145-4159, 2010.

L. Minutoli, D. Altavilla, L. Zentilin, M. Giacca, F. Squadrito et al., VEGF 627 overexpression via adeno-associated virus gene transfer promotes skeletal muscle 628 regeneration and enhances muscle function in mdx mice, Faseb J, vol.21, pp.3737-3746, 2007.

J. Trinity, G. Layec, and J. Lee, Heterogeneity of blood flow: impact of age on muscle specific tissue perfusion during exercise, The Journal of Physiology, vol.298, issue.8, pp.1729-1730, 2014.
DOI : 10.1113/jphysiol.2014.270694

K. Kalliokoski, Positron emission tomography detects greater blood flow and less 633 blood flow heterogeneity in the exercising skeletal muscles of old compared with 634 young men during fatiguing contractions, J Physiol, vol.592, pp.337-349, 2014.

M. Cole, J. Rafael, D. Taylor, R. Lodi, K. Davies et al., A quantitative study of 636 bioenergetics in skeletal muscle lacking utrophin and dystrophin, Neuromuscul, vol.637, issue.12, pp.247-257, 2002.

J. Dunn, S. Frostick, G. Brown, and G. Radda, Energy status of cells lacking dystrophin: an in vivo/in vitro study of mdx mouse skeletal muscle, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1096, issue.2, pp.1096115-120, 1991.
DOI : 10.1016/0925-4439(91)90048-E

J. Dunn, I. Tracey, and G. Radda, Exercise metabolism in Duchenne muscular 645 dystrophy: a biochemical and [31P]-nuclear magnetic resonance study of mdx mice, p.646

G. Kemp, D. Taylor, J. Dunn, S. Frostick, and G. Radda, Cellular energetics of dystrophic muscle, Journal of the Neurological Sciences, vol.116, issue.2, pp.201-206, 1993.
DOI : 10.1016/0022-510X(93)90326-T

J. Percival, M. Siegel, G. Knowels, and D. Marcinek, Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition, Human Molecular Genetics, vol.22, issue.1, pp.153-167, 2013.
DOI : 10.1093/hmg/dds415

G. Vidal, . Wc, E. Giacomini, F. Emmanuel, and P. Carlier, A truly non-invasive set-up for 653 the study of perfusion and energy metabolism in the rat calf in vivo: application to a 654 model of peripheral arterial disease (Abstract), Magma, p.15, 2002.

3. Microvessel, G. /. Of-flk1, E. Flk1, and G. , :mdx (D,F) mice: normal blood 663 microvessel organisation, with microvessels regularly scattered along myofibers (C-F) (Scale 664 bars: 50 µm) Morphometric analyses revealed similar diameter (G) and anastomose 665 count/mm 3 (H) between microvessels from wild-type and mdx mice

. Pi, PCr at rest (Pi/PCr rest ) 0

. Pi, PCr end ischemia (Pi/PCr end ) 0