F. J. Grundy, Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base., Journal of Bacteriology, vol.176, issue.15, pp.4518-4526, 1994.
DOI : 10.1128/jb.176.15.4518-4526.1994

F. J. Grundy and T. M. Henkin, tRNA as a positive regulator of transcription antitermination in B. subtilis, Cell, vol.74, issue.3, pp.475-482, 1993.
DOI : 10.1016/0092-8674(93)80049-K

W. C. Winkler, Control of gene expression by a natural metabolite-responsive ribozyme, Nature, vol.428, issue.6980, pp.281-286, 2004.
DOI : 10.1038/nature02362

F. J. Grundy, The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.12057-12085, 2003.
DOI : 10.1073/pnas.2133705100

M. Mandal, A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression, Science, vol.306, issue.5694, pp.275-279, 2004.
DOI : 10.1126/science.1100829

W. Winkler, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, vol.53, issue.6910, pp.952-956, 2002.
DOI : 10.1038/nature01145

A. Nahvi, Genetic Control by a Metabolite Binding mRNA, Chemistry & Biology, vol.9, issue.9, p.1043, 2002.
DOI : 10.1016/S1074-5521(02)00224-7

W. C. Winkler, An mRNA structure that controls gene expression by binding FMN, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15908-15913, 2002.
DOI : 10.1073/pnas.212628899

W. C. Winkler, An mRNA structure that controls gene expression by binding S-adenosylmethionine, Nature Structural Biology, vol.10, issue.9, pp.701-707, 2003.
DOI : 10.1038/nsb967

A. S. Mironov, Sensing Small Molecules by Nascent RNA, Cell, vol.111, issue.5, pp.747-756, 2002.
DOI : 10.1016/S0092-8674(02)01134-0

C. E. Dann, Structure and Mechanism of a Metal-Sensing Regulatory RNA, Cell, vol.130, issue.5, pp.878-892, 2007.
DOI : 10.1016/j.cell.2007.06.051

J. L. Baker, Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride, Science, vol.335, issue.6065, pp.233-235, 2012.
DOI : 10.1126/science.1215063

V. Epshtein, The riboswitch-mediated control of sulfur metabolism in bacteria, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.5052-5056, 2003.
DOI : 10.1073/pnas.0531307100

R. R. Breaker, Prospects for Riboswitch Discovery and Analysis, Molecular Cell, vol.43, issue.6, pp.867-879, 2011.
DOI : 10.1016/j.molcel.2011.08.024

J. X. Wang, Riboswitches that Sense S-adenosylhomocysteine and Activate Genes Involved in Coenzyme Recycling, Molecular Cell, vol.29, issue.6, pp.691-702, 2008.
DOI : 10.1016/j.molcel.2008.01.012

M. Mandal and R. R. Breaker, Adenine riboswitches and gene 13 activation by disruption of a transcription terminator, Nat Struct Mol Biol, vol.14, pp.11-29, 2004.

D. A. Rodionov, Comparative genomics of the methionine 16 metabolism in Gram-­?positive bacteria: a variety of regulatory systems, Nucleic Acids Res, vol.17, issue.32, pp.3340-3353, 2004.

D. A. Rodionov, Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes, Journal of Biological Chemistry, vol.278, issue.42, pp.41148-41159, 2003.
DOI : 10.1074/jbc.M305837200

URL : https://hal.archives-ouvertes.fr/inria-00099646

J. R. Mellin, A riboswitch-regulated antisense RNA in Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.110, issue.32, pp.13132-13137, 2013.
DOI : 10.1073/pnas.1304795110

G. André, S-­?box and T-­?box riboswitches and antisense RNA 23 control a sulfur metabolic operon of Clostridium acetobutylicum, pp.5955-5969, 2008.

R. M. Jeter, Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium, Journal of General Microbiology, vol.136, issue.5, pp.887-896, 1990.
DOI : 10.1099/00221287-136-5-887

M. R. Rondon and J. C. Escalante-­?semerena, The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium., Journal of Bacteriology, vol.174, issue.7, pp.2267-2272, 1992.
DOI : 10.1128/jb.174.7.2267-2272.1992

T. A. Bobik, A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation., Journal of Bacteriology, vol.174, issue.7, pp.2253-2286, 1992.
DOI : 10.1128/jb.174.7.2253-2266.1992

J. R. Mellin, Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA, Science, vol.345, issue.6199, pp.940-943, 2014.
DOI : 10.1126/science.1255083

URL : https://hal.archives-ouvertes.fr/pasteur-01120664

S. Debroy, Riboswitches. A riboswitch-­?containing sRNA 38 controls gene expression by sequestration of a response regulator, Science, vol.39, pp.345-937, 2014.

D. Papa, M. F. Perego, and M. , Ethanolamine activates a sensor 41 histidine kinase regulating its utilization in Enterococcus faecalis, J Bacteriol, vol.42, pp.190-7147, 2008.

K. Hollands, Riboswitch control of Rho-dependent transcription termination, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5376-5381, 2012.
DOI : 10.1073/pnas.1112211109

K. Hollands, Unusually long-­?lived pause required for regulation 46 of a Rho-­?dependent transcription terminator, Proc Natl Acad Sci, vol.111, pp.47-1999, 2014.

J. Livny and M. K. Waldor, Mining regulatory 5'UTRs from cDNA deep 49, 2010.

I. Irnov, Identification of regulatory RNAs in Bacillus subtilis, Nucleic Acids Research, vol.38, issue.19, pp.6637-6651, 2010.
DOI : 10.1093/nar/gkq454

L. Bastet, New insights into riboswitch regulation mechanisms, Molecular Microbiology, vol.5, issue.5, 2011.
DOI : 10.1111/j.1365-2958.2011.07654.x

M. Caron, Dual-acting riboswitch control of translation initiation and mRNA decay, Proceedings of the National Academy of Sciences, vol.109, issue.50, pp.3444-53, 2012.
DOI : 10.1073/pnas.1214024109

F. Groher and B. Suess, Synthetic riboswitches ??? A tool comes of age, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1839, issue.10, p.11, 2014.
DOI : 10.1016/j.bbagrm.2014.05.005

P. Ceres, Engineering modular 'ON' RNA switches using biological components, Nucleic Acids Research, vol.41, issue.22, pp.10449-10461, 2013.
DOI : 10.1093/nar/gkt787

N. Muranaka and Y. Yokobayashi, Posttranscriptional signal 15 integration of engineered riboswitches yields band-­?pass output, Angew, p.16, 2010.

P. Ceres, Modularity of Select Riboswitch Expression Platforms Enables Facile Engineering of Novel Genetic Regulatory Devices, ACS Synthetic Biology, vol.2, issue.8, pp.463-472, 2013.
DOI : 10.1021/sb4000096

S. K. Desai and J. P. Gallivan, Genetic Screens and Selections for Small Molecules Based on a Synthetic Riboswitch That Activates Protein Translation, Journal of the American Chemical Society, vol.126, issue.41, pp.13247-13254, 2004.
DOI : 10.1021/ja048634j

S. Hanson, Tetracycline-aptamer-mediated translational regulation in yeast, Molecular Microbiology, vol.6, issue.6, pp.1627-1637, 2003.
DOI : 10.1046/j.1365-2958.2003.03656.x

J. E. Weigand, Screening for engineered neomycin riboswitches that control translation initiation, RNA, vol.14, issue.1, pp.89-97, 2008.
DOI : 10.1261/rna.772408

S. A. Lynch, A High-Throughput Screen for Synthetic Riboswitches Reveals Mechanistic Insights into Their Function, Chemistry & Biology, vol.14, issue.2, pp.173-184, 2007.
DOI : 10.1016/j.chembiol.2006.12.008

B. Suess, Conditional gene expression by controlling translation with tetracycline-binding aptamers, Nucleic Acids Research, vol.31, issue.7, pp.1853-1858, 2003.
DOI : 10.1093/nar/gkg285

S. Topp, Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species, Applied and Environmental Microbiology, vol.76, issue.23, pp.7881-7884, 2010.
DOI : 10.1128/AEM.01537-10

J. C. Seeliger, A Riboswitch-­?Based Inducible Gene Expression 34 System for Mycobacteria A fast and efficient translational control system for 36 conditional expression of yeast genes Synthetic riboswitches for the conditional 38 control of gene expression in Streptomyces coelicolor, PLoS ONE Nucleic Acids Res Microbiology, vol.7, issue.159, pp.45-120, 2009.

Y. Nakahira, Theophylline-Dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942, Plant and Cell Physiology, vol.54, issue.10, pp.1724-1735, 2013.
DOI : 10.1093/pcp/pct115

M. N. Win, Frameworks for Programming Biological Function through RNA Parts and Devices, Chemistry & Biology, vol.16, issue.3, pp.298-310, 2009.
DOI : 10.1016/j.chembiol.2009.02.011

K. M. Thompson, Group I aptazymes as genetic regulatory 49 switches, BMC Biotechnology, vol.2, issue.1, p.21, 2002.
DOI : 10.1186/1472-6750-2-21

Y. Y. Chen, Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems, Proceedings of the National Academy of Sciences, vol.107, issue.19, pp.8531-8534, 2010.
DOI : 10.1073/pnas.1001721107

T. S. Bayer and C. D. Smolke, Programmable ligand-controlled riboregulators of eukaryotic gene expression, Nature Biotechnology, vol.13, issue.3, pp.337-343, 2005.
DOI : 10.1073/pnas.0402940101

C. L. Beisel, Model-guided design of ligand-regulated RNAi for programmable control of gene expression, Molecular Systems Biology, vol.5, p.224, 2008.
DOI : 10.1017/S1355838200000169

L. Qi, Engineering naturally occurring trans-­?acting non-­?coding 9, 2012.
DOI : 10.1093/nar/gks168

URL : http://doi.org/10.1093/nar/gks168

J. M. Callura, Tracking, tuning, and terminating microbial physiology using synthetic riboregulators, Proceedings of the National Academy of Sciences, vol.107, issue.36, pp.15898-15903, 2010.
DOI : 10.1073/pnas.1009747107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936621

S. Topp and J. P. Gallivan, Guiding Bacteria with Small Molecules and RNA, Journal of the American Chemical Society, vol.129, issue.21, pp.6807-6811, 2007.
DOI : 10.1021/ja0692480

E. J. Cho, Applications of Aptamers as Sensors, Annual Review of Analytical Chemistry, vol.2, issue.1, 2009.
DOI : 10.1146/annurev.anchem.1.031207.112851

R. L. Strack and S. R. Jaffrey, New approaches for sensing metabolites and proteins in live cells using RNA, Current Opinion in Chemical Biology, vol.17, issue.4, pp.651-655, 2013.
DOI : 10.1016/j.cbpa.2013.05.014

T. M. Henkin, Riboswitch RNAs: using RNA to sense cellular metabolism, Genes & Development, vol.22, issue.24, pp.3383-3390, 2008.
DOI : 10.1101/gad.1747308

C. C. Fowler, Using a Riboswitch Sensor to Examine Coenzyme B12 Metabolism and Transport in E. coli, Chemistry & Biology, vol.17, issue.7, pp.756-765, 2010.
DOI : 10.1016/j.chembiol.2010.05.025

J. S. Paige, Fluorescence Imaging of Cellular Metabolites with RNA, Science, vol.335, issue.6073, p.1194, 2012.
DOI : 10.1126/science.1218298

J. S. Paige, RNA Mimics of Green Fluorescent Protein, Science, vol.333, issue.6042, pp.642-646, 2011.
DOI : 10.1126/science.1207339

C. A. Kellenberger, RNA-­?based fluorescent biosensors for live 28 cell imaging of second messengers cyclic di-­?GMP and cyclic AMP-­?GMP, J. Am, p.29, 2013.