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Abstract

Background: The determination of protein structures satisfying distance
constraints is an important problem in structural biology. Whereas the most
common method currently employed is simulated annealing, there have been
other methods previously proposed in the literature. Most of them, however, are
designed to find one solution only.

Results: In order to explore exhaustively the feasible conformational space, we
propose here an interval Branch-and-Prune algorithm (iBP) to solve the Distance
Geometry Problem (DGP) associated to protein structure determination. This
algorithm is based on a discretization of the problem obtained by recursively
constructing a search space having the structure of a tree, and by verifying
whether the generated atomic positions are feasible or not by making use of
pruning devices. The pruning devices used here are directly related to features of
protein conformations.

Conclusions: We described the new algorithm iBP to generate protein
conformations satisfying distance constraints, that would potentially allows a
systematic exploration of the conformational space. The algorithm iBP has been
applied on three α-helical peptides.

Keywords: Distance geometry, branch-and-prune algorithm, Molecular
conformation, Protein structure, Nuclear Magnetic Resonance1

2

Background3

Protein structure determination is crucial for understanding protein function, as it4

paves the way to the discovery of new chemical compounds and of new approaches5

to control the biological processes.6

The problem of protein structure determination is certainly a problem with mul-7

tiple solutions, as proteins are flexible polymers. As most of the experimental tech-8

niques of the structural biology obtain measurements averaged on an ensemble of9

protein conformations, the usual approaches for structure determination intend to10

find an average structure or a set of conformations describing fluctuations around11

an average structure. A path intending to get a complete coverage of the confor-12

mational space, given a series of constraints, is usually not taken, although such an13

approach could provide precious information about the conformational equilibrium,14

which is essential in the function of many proteins, as the HIV protease [1].15
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An important class of experimental methods for protein structure determination16

is based on the measurement of inter-atomic distances and angles, such as Nu-17

clear Magnetic Resonance (NMR) [2] and cross-linking coupled to mass spectrom-18

etry [3]. In NMR, distance intervals between hydrogens are determined from the19

measurement of nuclear Overhauser effects (NOE). The experimentally measured20

distances are then used as constraints for protein structure calculations. Pure in21

silico approaches have been also developed based on the use of inter-atomic dis-22

tance constraints, such as homology modeling [4] or prediction of protein-protein23

complexes [5] and ligand poses [6].24

The Distance Geometry Problem (DGP) [7, 8] consists in identifying the sets of25

points which satisfy a set of constraints based on relative distances between some26

pairs of such points. The present work describes an algorithm developed to solve27

DGP in the context of protein structure determination: the points represent the28

protein atoms.29

The DGP is a constraint satisfaction problem. Several approaches solve this prob-30

lem by reformulating it [8] as a global optimization problem having a continuous31

search domain, and whose objective function is generally a penalty function de-32

signed to measure the violation of the distance constraints. Over the years, the33

solution of DGPs arising in structural biology have been typically attempted by34

Simulated Annealing (SA) approaches based on molecular dynamics [9]. Other pro-35

posed approaches are based on various optimization methods as in [10]. As all36

meta-heuristic approaches, SA may provide approximate solutions but does not de-37

liver optimality certificates. In the case of protein structure determination, since38

the optimization problem is a reformulation of a constraint satisfaction problem,39

solutions given by SA can be successively verified by checking the violations of the40

distance constraints. However, additional solutions may exist but go undetected41

by SA. Thus, an algorithm for the systematic enumeration of the possible confor-42

mations of a given protein could find a widespread field of application. Branch-43

and-prune algorithms and similar were proposed in the general context of protein44

structure determination [11–16], (see also [8] and references therein). However, these45

studies primarily addressed the question of defining relative orientations of protein46

monomers in symmetric oligomers, not the determination of all possible conforma-47

tion of a polypeptide chain with a very large number of degrees of freedom from48

distance constraints. Systematic exploration was proved to be useful in the case49

of residual dipolar couplings (RDC) constraints [17], for exploring the sidechains50

conformations [18, 19] and for assignment of NOEs, provided that the structure is51

known [20]. For the structure determination from RDCs, it has been shown [21]52

that when using RDCs but only sparse NOEs the problem can be solved in poly-53

nomial time. Such approaches have also been used for structure determination in54

X-ray crystallography for non-crystallographic symmetry by orienting and translat-55

ing symmetric protein subunits [22]. To the best of our knowledge, in this paper56

we present the first application of a Branch-and-Prune algorithm to the problem of57

full protein structure determination based on unambiguous distance information.58

Under certain conditions, DGPs can be discretized [23] (see below), which means59

that the search domain for the corresponding optimization problem can be reduced60

to a discrete set, which has the structure of a tree. The discretization makes the61
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enumeration of the entire solution set of DGP instances possible. This is important62

when the experimental constraints do not specify the protein conformation uniquely,63

i.e., more than one conformation satisfies all constraints. For solving discretized64

DGP, we employ an interval branch-and-prune (iBP) algorithm [24], which is based65

on the idea of recursively exploring the tree while generating new candidate atomic66

positions (branching phase) and to verify the feasibility of such positions (pruning67

phase) (Figure 1). By making use of pruning devices, branches rooted at infeasible68

positions can be discarded from the tree, so that the search can be reduced to the69

feasible parts of the tree (Figure 2). Pruning devices can be conceived and integrated70

in iBP to improve the performances of the pruning phase and thus of the algorithm.71

In the present work, we first describe the branching phase and the pruning de-72

vices used to determine the solutions to the Distance Geometry problem. Then, an73

overall view of the method is given along with the use of the branching and pruning74

devices at different steps and the complexity of the algorithm is analyzed. We finally75

illustrate the algorithm application with three proteins for which α-helical regions76

are known along with few long-range NMR constraints (ie. constraints measured be-77

tween residues i and j such that |i− j| > 3 in the protein sequence). The obtained78

conformations display good stereochemical quality parameters, and the conforma-79

tional space explored is larger than the one sampled with traditional optimization80

methods such as simulated annealing.81

Methods82

In order to sample the conformational space of a protein, we use a Branch-and-83

Prune algorithm to build a tree in which each node represents a solution for one84

atomic position. We limit ourselves in the present work to the calculation of the85

backbone and Cβ atomic coordinates.86

The constraints used to generate atomic coordinates along the Branch-and-Prune87

algorithm are the following:88

1 covalent distance constraints corresponding to bond lengths and bond angles,89

whose values are derived from high-resolution small molecule X-ray crystal90

structures [25];91

2 NMR distance constraints;92

3 van der Waals radii of atoms between non-bonded atom pairs (i, j): a fraction93

of the sum of the van der Waals radii of each atom provides a lower bound to94

the corresponding inter-atomic distances:95

dij ≥ σ(rvdw
i + rvdw

j ), (1)96

where σ ∈ [0, 1], and is typically around 0.85. The values for the radii are97

given in Table 1 [26, 27]. These lower bounds apply only in the cases where98

no larger lower bound has been determined from NMR distance constraints;99

4 distances derived from the backbone torsion angles φ and ψ;100

5 hydrogen bonds in α-helix;101

6 amino-acid chirality;102

7 α-helix geometry.103
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The atom coordinates are calculated, one by one, following the atom order Pato104

described in Figure 3 and previously proposed in [24]. In this order, some atoms are105

repeated to insure that any entered atom is defined by distance constraints with106

respect to three preceding atoms in Pato [24]. The carbonyl oxygens and the atoms107

Cβ, which were not present in the order Pato, are calculated separately.108

Then, the tree is built using a recursive procedure to create each node of the tree.109

This procedure is called branching phase. The created nodes are then submitted to110

the pruning devices in order to decide whether the node should be kept or removed.111

If the node is removed, the possible branches starting from this node are also pruned.112

A pruning device is responsible for checking whether a partial solution is feasible,113

i.e. to check whether a set of embedded atoms fulfill the constraints (1)-(7) described114

above.115

In the following, we describe the branching phase and the pruning devices. Then,116

the complexity of the algorithm is described from a theoretical point of view, before117

presenting some application cases.118

Branching Devices119

The tree parsed during iBP is formed by nodes, each corresponding to one set of120

atomic coordinates from the order Pato (Figure 3) [24]. At each level of the tree,121

the atomic coordinates of the corresponding atom are calculated by making use of122

a recursive procedure, called branching phase. The current atom position is defined123

by distance constraints to three other atoms. These distances are obtained from124

the constraints (1-3) described above: (1) the covalent constraints, (2) the NMR125

distance constraints, (3) the van der Waals radii.126

If the distance constraints specify a unique value rather than an interval, this127

signifies that the distances to three immediate predecessors from the current vertex128

are known: these are the centers of the three spheres, and the distances are the129

radii of these spheres. The position of the current vertex/atom is thus defined by130

the intersection of three spheres, so there are at most two solutions for the current131

atom position: this is called a 2-branching situation (Figure 4).132

When a distance is not uniquely defined, but rather defined by lower and upper133

bounds, i.e. di,j ∈ [li,j , ui,j ], this distance is uniformly discretized by sampling b ≥ 1134

values in [li,j , ui,j ], as depicted in Figure 5.135

d̃i =
{
li,i−3 + (t− 1)

(ui,i−3 − li,i−3)
b

: t = 1, . . . , b
}
. (2)136

In this case, we have a b-branching situation.137

The algorithm used for calculating the atom coordinates is then applied to each138

set of d̃i values sampled for the distance constraints. The choice of the discretization139

factor b is a crucial point: a small value might lead to an infeasible problem because140

we may not select any feasible distance; a larger value increases the computational141

burden. In general, the finer the discretization, the more accurate the computation142

is, but it is not trivial to figure out the optimal value for b. One way to choose b is143

to consider that the number of nodes in the search tree is bounded by 3 + (2lbk) ,144

where l is the number of tree levels where we have a 2-branching situation, and k is145
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the number of tree levels where we have a b-branching situation [28]. Appropriate146

values of b should result in a manageable number of nodes.147

Given the position of the three previous atoms k − 3, k − 2, k − 1 in the order148

Pato and given the constraints to these atoms of the atom k to be embedded, the149

position of k is calculated by a recursive matrix multiplication by making use of150

the set of distances d = {dk,k−1, dk,k−2, dk,k−3} between the previous atoms and151

k. Although there are several methods to compute sphere intersections [29], in our152

experience, the best trade-off between efficiency and numerical stability is given by153

the use of recursion matrices [23], and of the two following angles: (i) the torsion154

angle ω3 formed by atoms {k, k − 1, k − 2, k − 3} which depends on the distance155

between k and k − 3, (ii) the angle θ2 formed by atoms {k, k − 1, k − 2}.156

The recursion is applied through the equation:157


xk

yk

zk

1

 = B1B2B3 . . . Bk(d, σ)


0
0
0
1

 = Qk−1Bk(d, σ)


0
0
0
1

 = Qk


0
0
0
1

 , (3)158

where:159

Bk(d, σ) =


− cos θ2 −σ sin θ2 0 −dk,k−1 cos θ2

σ sin θ2 cosω3 − cos θ2 cosω3 − sinω3 σdk,k−1 sin θ2 cosω3

σ sin θ2 sinω3 − cos θ2 sinω3 cosω3 σdk,k−1 sin θ2 sinω3

0 0 0 1

 ,
(4)160

and σ ∈ {+1,−1}. The series of recursion matrices is initialized as:161

B1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B2 =


−1 0 0 −d2,1

0 1 0 0
0 0 −1 0
0 0 0 1

 ,

B3 =


− cos θ3 − sin θ3 0 −d3,2 cos θ3
sin θ3 − cos θ3 0 d3,2 cos θ3

0 0 1 0
0 0 0 1

 .
(5)162

d2,1 being the distance between the first and the second atom, and d3,2 the distance163

between the third and the second atom in the order Pato.164

The total number of Bk matrices to be calculated along the parsing of the tree165

is bounded by 2 | Pato | b, where | Pato | is the size of the ordered atom list Pato.166

The product Qk−1Bk is calculated in two steps: (1) the fourth column of Qk, which167

gives us the coordinates of k, is computed; (2) only if k is not pruned, the three168

remaining columns are computed.169

We must distinguish two cases when embedding an atom k. If it is the first appear-170

ance of k in Pato, we use equation (3) to compute all possible embeddings of k for171
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σ ∈ {+1,−1} and the set of distances d. If it is not the first appearance of k in Pato,172

we need to take into account the fact that numerical instabilities generate matrices173

which will lead to slightly different coordinates for k than those computed the first174

time. In order to decrease the impact of these numerical errors, we compute the set175

of distances d, the angles θ2, ω3 and for σ ∈ {+1,−1} the corresponding matrices176

Bk(d,+1), Bk(d,−1), which lead to two possible embeddings of k (Equation 3), as177

k+ = Qk−1Bk(d,+1) and k− = Qk−1Bk(d,−1). We choose the value of k that178

yields the updated coordinates of k being the closest to the previous coordinates of179

this atom.180

Each carbonyl oxygen Oi−1 is uniquely determined for residue i, once Ci−1, N i
181

and Hi have been embedded, since these atoms are all part of the peptide plane [30].182

As is common practice (see, e.g., [31–33]), we fix here the torsion angle ω of the183

peptide plane to -180◦ or 0◦. In a previous implementation [34], the positions of184

the carboxylic oxygens were not stored. Although this approach leads to memory185

savings, the availability of carboxylic oxygen positions can improve the definition186

of the α-helix secondary structure.187

The positions of the carbonyl oxygens are thus now calculated in the following way.188

If k = Oi−1 is the carboxylic oxygen atom located at the vertex k, and {v1, v2, v3}189

are the vertices corresponding to atoms {Ci−1, N i,Hi}, belonging on the same190

peptide plane π, we denote nπ the normal vector to π. The coordinates of k can191

then be computed by solving the following non-linear system:192 {
‖k − vi‖2 = d2

ki, i = 1, 2, 3
nT

π (v1 − k) = 0
. (6)193

where dki are the distances between atoms k and i. Using an approach similar to194

those employed in [35], we obtain the equivalent linear system:195 
2(v2 − v1)T k = d2

k1 − d2
k2 − ‖v1‖2 + ‖v2‖2

2(v3 − v1)T k = d2
k1 − d2

k3 − ‖v1‖2 + ‖v3‖2

nT
π (v1 − k) = 0

(7)196

The parameter dk1 is the length of the bond connecting Oi−1 and Ci−1, the param-197

eters dk2 and dk3 are the distances between k = Oi−1 and N i, Hi, calculated from198

bond angles and bond lengths between atoms of the peptide plane, and the angle ω199

of 180◦ in a trans peptide plane. The case of the cis peptide plane can be treated200

in the same way, modifying the value of ω to be 0◦.201

Following the idea proposed for carbonyl oxygens, the coordinates k of a Cβ atom202

can be computed from previously calculated atoms, because the four distances of203

k to atoms {v1 = Cα, v2 = Hα, v3 = N, v4 = C} are exactly known, and because204

these five atoms are not coplanar. The coordinates k are calculated by solving the205

linear system:206 
2(v2 − v1)T k = d2

k1 − d2
k2 − ‖v1‖2 + ‖v2‖2

2(v3 − v1)T k = d2
k1 − d2

k3 − ‖v1‖2 + ‖v3‖2

2(v4 − v1)T k = d2
k1 − d2

k4 − ‖v1‖2 + ‖v4‖2

(8)207
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The parameter dk1 is the length of the bond connecting k = Cβ and Cα, the208

parameters dk2, dk3 and dk4 are the distances between k = Cβ and Hα, N , C,209

calculated from bond angles and bond lengths between these atoms.210

Pruning Devices211

Once the set of possible coordinates of the atom k has been determined in the212

branching phase described above, pruning devices are used to check whether the213

coordinates of k are feasible. In some cases described below, the coordinates of k214

along with the coordinates of previously embedded atoms are checked together. If215

the check is negative, the solution obtained for k is discarded, which prunes all216

tree branches originating from the node k. In this section, we present the pruning217

devices used to accept or discard the coordinates of the atom k generated by the218

branching devices. The pruning device applies all these tests as soon as the involved219

atoms have been embedded.220

Direct Distance Feasibility (DDF)221

As the coordinates for an atom k are determined, we first check that all distances222

between k and the other embedded atoms respect the given lower and upper bounds223

arising from the constraints (1-3) listed in section “Solving the DGP with iBP”.224

Torsion Angle Feasibility (TAF)225

The values of the backbone torsion angles φ, ψ, are used as a pruning device, check-226

ing whether they are located in the permitted regions of the Ramachandran plot.227

The pruning device, first introduced in [34], is implemented in the following way.228

The torsion angle ξijkl defined by a quadruple of atoms {i, j, k, l} falls into a domain229

Ξijkl, up to a certain tolerance εt > 0. In general, Ξijkl is the union of κ dis-joined230

intervals, i.e.231

Ξijkl =
κ⋃

c=1

Ξc
ijkl (9)232

From the bounds on a torsion angle ξijkl it is possible to derive bounds on the233

distance dil, noticing that234

dil(ξijkl) =
√
d2

ij + d2
lj − 2(cos(ξijkl)

√
ef + bc)dijdlj , (10)235

where:236

b =
1
2
d2

lj + d2
jk − d2

lk

dljdkj
237

c =
1
2
d2

ij + d2
jk − d2

ik

dijdjk
238

e = 1− b2, f = 1− c2.239

240
241
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Taking the maximum and minimum values of d(ξijkl) for ξijkl ∈ Ξijkl, we obtain242

an interval [lil, uil] for the distance dil. The sign of the angle ξijkl is used as an243

additional pruning criterion along with the dil interval.244

Dijkstra Shortest-Path (DSP)245

As introduced in [23], we can exploit the fact that the distances are Euclidean246

to improve the iBP pruning capabilities. We extend and generalize the procedure247

presented in [36] in the following way. We introduce an auxiliary graph G+ with the248

same topology as the graph connecting the atoms in the protein, but such that the249

weight of each edge (i, j) is the upper bound of the distance dij . For every pair of250

atoms i, j, the shortest-path between i, j in G+ is a valid over-estimate of dij . Thus251

we used an all-to-all shortest-path algorithm, the Floyd-Warshall algorithm [37], to252

refine the upper bound for each pair of atoms.253

The Dijkstra Shortest-Path pruning device uses the refined upper bounds of inter-254

atomic distances in the following way. According to Lemma 4 in [23], for an atom255

k and for each atom pair i, j such that i < j < k in the order Pato and for which256

dik is known, the embedding of k can be pruned if:257

‖i− j‖ − dik > ujk (11)258

where ujk is the upper bound of the atom pair (j,k) obtained using the Floyd-259

Warshall algorithm [37].260

Chirality (CHI)261

The pruning of atom coordinates through the amino-acid chirality is implemented262

through the so-called CORN rule of thumb: in amino acids, the groups COOH, R263

(sidechain), NH2 and H are bonded to the chiral center Cα carbon. Starting with264

the hydrogen atom away from the viewer, if these groups are arranged clockwise265

around the Cα carbon, then the amino-acid is in the D-form. If these groups are266

arranged counter-clockwise, the amino-acid is in the L-form. The CORN rule was267

restated by imposing that the torsion angle defined by the atoms C,Cβ,N,Hα of268

residue i for the D-form or C,N,Cβ,Hα of residue i for the L-form, is positive.269

α-helix secondary structure270

We proposed the use of α helix information as a pruning device in the context271

of the iBP algorithm first in [34]. The α helix location can be determined from272

an analysis of the NMR chemical shifts by TALOS [38]. Four criteria are used to273

enforce the formation of an α helix: (i) the formation of backbone hydrogen bonds274

between amide hydrogens and carbonyl oxygens, (ii) the alignment of the amide and275

carbonyl functions checked by a qualitative condition on the energy of the hydrogen276

bond, (iii) the definition of backbone φ and ψ torsion angles already described in277

the Torsion Angle Feasibility, (iv) the definition of three additional angles θ, θ’ and278

θ” similar to the ones introduced by Grishaev et al [39].279



Cassioli et al. Page 9 of 22

On a sequence of m+1 contiguous residues Iα = {i, i+1, . . . , i+m} forming an α280

helix, for any pair of residues (i− 4, i) belonging to Iα, the lower and upper bounds281

on the distance between the carboxylic oxygen Oi−4 and the amide hydrogen Hi
282

should be compatible with the formation of an hydrogen bond. The upper and lower283

bounds are defined in an input parameter file of iBP, and were set to 1.9 and 3.0 Å284

in the present work.285

The condition checking the alignment of atoms involved in the hydrogen bond is286

implemented by calculating a local energy information defined in the DSSP package287

[40]:288

q1q2

[
1

dOi−4Ni

+
1

dCi−4Hi

− 1
dOi−4Hi

− 1
dCi−4Ni

]
· f < −0.5, (12)289

with q1 = 0.42, q2 = 0.2 and f = 332, and dAB correspond to the distance between290

atoms A and B.291

The last criterion enforces the angles θ, θ’, θ” to be respectively into the interval292

values 0/70◦, 0/90◦ and 110/180◦.293

Implementation Details294

In this section we provide an overview of the main implementation features. The iBP295

algorithm has been coded in C++ with extensive use of template meta-programming296

[41], STL [42, 43], and BOOST (www.boost.org). Linear systems, as for instance297

(7), are solved using the LAPACK library [44].298

Discretizable DGP instances were represented by simple weighted undirected299

graphs G = (V,E, d), which were handled by the Boost Graph Library (BGL) [45].300

The points in R3 were represented using the Boost Geometry Library (also known301

as Generic Geometry Library, GGL: www.boost.org).302

Constraints on distances, angles or energy are typically expressed by enforcing a303

variable x to take values in a domain D, which is generally the union of intervals304

and singletons:305

D =


m⋃

j=1

x̄j

 ∪

{
k⋃

i=1

[xl
i, x

u
i ]

}
. (13)306

The Boost Interval Library (BIL – see [46, 47]) was used to store such representa-307

tion, and to perform basic operations for intervals and singletons. On top of the308

BIL, we define the type domain which contains a set of intervals and operations as309

intersection, scaling, etc. The BIL allows also to select the underlining data format310

for the interval (single/double precision real, integer).311

Theory312

In this section we give some details about the worst-case asymptotic complexity313

behavior of the iBP algorithm. The description given above includes many details314

which are useful for finding the structure of proteins but which somewhat complicate315
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the precise mathematical treatment. We first give a very brief abstract description316

of the iBP and of the formal problem it solves, and then proceed to discuss its317

complexity.318

Formally speaking, the DGP is the following decision problem: given an integer319

K > 0, a simple undirected graph G = (V,E) and an edge weight function d :320

E → R+, is there a realization x : V → RK such that for each {u, v} ∈ E we have321

‖xu−xv‖2 = duv? Note that we are writing xu for x(u) and duv for d(u, v). We also322

remark that in the more “applied” interpretation given in the preceding section,323

the range of the edge function d is IR+, i.e. the set of all non-negative closed real324

intervals, and K = 3. The DGP is NP-hard for any K > 1 and NP-complete for325

K = 1 [48]. Since we are interested in finding all solutions of the DGP rather than326

just one, we denote by X the set of all realizations of G.327

Assumptions on the DGP input data328

In fact, due to the fact that our data come from a protein structure setting, we can329

also make the following assumptions about G and d:330

1 there is an order 1, 2, . . . , n on the vertices such that 1, 2, 3 is a triangle in the331

graph G and, for each vertex v > 3, v is adjacent to v − 1, v − 2, v − 3;332

2 the set of edges E can be partitioned in two subsets ED and EP , such that333

EP consists of all edges {u, v} with v > 4 and |v−u| > 3, and ED = ErEP ;334

3 ED can be further subdivided in E′
D and E′′

D, so that E′′
D consists of all edges335

{u, v} with |v − u| = 3, and E′
D = ED r E′′

D;336

4 the distance function d is such that: (a) duv is a scalar for each {u, v} ∈ E′
D;337

(b) duv consists of a discrete set of b scalars for each {u, v} ∈ E′′
D; (c) duv is338

a general interval for all {u, v} ∈ EP .339

We remark that the above definitions can be appropriately extended to Euclidean340

spaces of any dimension K > 0, not just K = 3. We call ED the discretization edges341

and EP the pruning edges. Discretization edges ensure that the graph G is rigid,342

which implies that there are finitely many realizations of G in RK . Pruning edges343

make some of those realizations infeasible, and thereby make the solution set X344

smaller. A few remarks are in order:345

• we consider that distances which are known because of covalent bond relations346

are sufficiently precise to be represented by a scalar;347

• we consider that distances which are known from NOESY (or other) experi-348

ments can be represented by intervals;349

• we assume that a limited number of the intervals can be discretized into sets350

containing a finite number b of values within the intervals;351

• the edges in E′
D represent atom pairs of the form {v, v − 1} or {v, v − 2} for352

any v > 2: these are involved in covalent bonds;353

• the edges in E′′
D represent atom pairs which are assigned a certain number b354

of possible values (optionally b = 1 for certain pairs);355

• the edges in EP represent atom pairs for which the distance might be a general356

interval.357

We remark that the order on V was initially intended to follow the protein backbone358

[49], but new orders which better exploit the hydrogen atoms in or close to the359

backbone have been defined in [50, 51]: these are the orders on which the above360

assumptions are based.361
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The DGP with the restrictions above, but where all intervals are replaced by362

scalars, is called Discretizable Molecular DGP (DMDGP). Both the DMDGP363

and its generalization to any K (denoted by KDMDGP) are NP-hard [52,53]. The364

problem defined above, involving intervals, obviously contains the DMDGP as a365

sub-case and is hence also NP-hard by inclusion.366

When all distances are precise367

We first focus on the simplest case, where all intervals are replaced by scalar values.368

Then d : E → R+, and b = 1. In this simplified setting, the iBP is simply called369

BP [52], and the order on V is called a contiguous trilateration order [54] or a370

DMDGP order [55].371

The BP can be defined as a recursive procedure: assuming we already found a372

realization x1, . . . , xv−1 for the vertices 1, . . . , v − 1, and that we mean to find a373

consistent realization xv for v, the discretization edges ED guarantee that there374

will be at most two positions for xv compatible with the distances restricted to375

ED [49]. This can be intuitively understood in R3 by considering the intersection of376

three spheres centered at xv−1, xv−2, xv−3 with radii dv,v−1, dv,v−2, dv,v−3: the first377

two spheres either do not meet or their intersection is in general a circle, and the378

intersection of the third sphere with this circle is either empty or consists in general379

of two points [56]. We can now consider the distances defined on pruning edges in380

EP , linking v to its preceding vertices in order to accept or reject these two points.381

For each accepted point we recursively call BP with v replaced by v+1, for all v < n.382

When v = n we have a valid realization of the graph: we save it in X, and proceed383

to complete the recursive search. This yields a search tree which is explored depth-384

first. The recursion starts after placing the initial triangle 1, 2, 3 (either arbitrarily385

or by using BP restricted to subspaces), so this tree starts branching at level 4. It386

can be proved that, at completion, X contains all incongruent (modulo translations387

and rotations) realizations of G.388

In the case where EP = ∅, the search tree is a complete binary tree with 2n−3
389

nodes at the n-th (and last) level: in other words, its depth is n and its width is390

2n−3. This is the worst case, since the BP must explore all of the nodes in the391

tree, and proves that the BP (and hence the iBP, since it generalizes the BP) is an392

exponential-time algorithm in n.393

When EP 6= ∅, it was shown that X almost always contains a number of solutions394

which is either zero or a power of two [55]; this discovery led to a set of results395

where the BP search tree width can be kept polynomial in n during the search [53].396

Since the exponential behavior is only due to the tree width, this yields a set of397

cases where the BP is actually fixed-parameter tractable (FPT). Throughout all our398

experiments with protein data we were always able to fix the parameter controlling399

the exponential growth of the tree width to a universal constant, which makes BP400

“polynomial on proteins” (this is an informal statement — the precise statement is401

given in [53]).402
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Intervals and discrete distance sets403

The theory supporting the case where d might map edges to discrete sets of dis-404

tance values or intervals, which is the case treated in this paper, is not so clearly405

understood yet. As it generalizes the simpler case sketched above, in a certain sense406

it inherits its properties, but this is an oversimplification: for instance, if all inter-407

vals are [0,∞], it is obvious that the problem is easy independently of the graph408

topology, since every realization is valid.409

Some bounds on the cardinality of X in the presence of discrete sets and intervals410

are given in [55]. Our understanding is that if the intervals are small enough, the411

theory which led to fixed-parameter tractability goes through with few changes,412

but we have no way so far of establishing an aprioristic maximum width for the413

intervals. If the intervals are very large the problem might become tractable, as414

mentioned above, for the purposes of finding at least one solution. The iBP would415

still behave exponentially, however.416

Results-Discussion417

We applied the presented algorithm to three examples of proteins displaying α heli-418

cal secondary structures. Before presenting the obtained results, we emphasize that419

the method proposed here has a completely different philosophy than classical opti-420

mization approaches commonly used in the field of NMR structure determination.421

In the present approach, each constraint is treated in the strict sense, that is, no422

violation, however small, is tolerated. This is why we consistently use the word423

constraint in the paper. This is what potentially allows us to systematically explore424

the entire search space. However, the use of the procedure demands that the data425

have been pre-processed accordingly, and all geometric inconsistencies that exist in426

three–dimensional space have been removed.427

For the proteins studied here, if one includes the ensemble of NMR interval dis-428

tance constraints stored in the .mr file at the Protein Data Bank (PDB) [57] as well429

as all pruning devices described above, all solutions are pruned out, indicating that430

no solution to the distance geometry problem exists with the deposited data. This431

is not really surprising, since the optimization algorithms generally used in NMR432

structure determination are based on optimization of a target function or hybrid433

energy rather than on strict constraint satisfaction. That is, there is always a phase434

where the algorithm tries to find a trade-off when inconsistencies exist between435

constraints. The optimization thus produces solutions in which chemical and NMR436

constraints are optimized, but in which small violations are always present. These437

inconsistencies are present in any structure determination, in particular because438

distance constraints are imprecise, due to experimental limitations.439

Since the data in the PDB for the examples presented here were not pre-processed440

the way our algorithm requires, we decided to use a subset of the stored data sets:441

the definition of α-helix regions and a few long-range distance constraints arbitrary442

selected from the set of NMR constraints for structures with more than one α-helix.443

In order to further reduce the risk of all solutions being pruned, we used tolerance444

values for atomic positions and angles between atoms (Table 2).445
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The three examples we chose to illustrate the algorithm display an increasing446

structural complexity: (i) a single α helix, corresponding to the structure of pep-447

tide CM15 determined in micelles (PDB id: 2JMY [58]), (ii) an α helical hairpin448

(PDB id: 2KXA [59]), (iii) the insecticidial toxin TAITX-1a, formed as a bundle of449

four α helices, restrained by three disulphide bridges (PDB id: 2KSL). The main450

characteristics of the studied proteins are given in Table 2. All three examples were451

originally determined by Nuclear Magnetic Resonance (NMR), and the correspond-452

ing constraint lists are available from the PDB. The analysis by PROCHECK [60]453

of the Ramachandran diagram of these three PDB structures shows that more than454

85% of the residues are located in the core region. For 2KXA and 2KSL, more than455

95% of the residues are located in the core and allowed region, whereas in 2JMY,456

7% of the residues are located in the generously allowed region. For 2KXA, one457

PRO residue was replaced by an ALA, as the PRO cycle has not yet been included458

in the current version of the iBP algorithm.459

We generated conformations using the branching phase and the pruning devices460

described above. The long-range constraints added for the calculations of 2KXA and461

2KSL, are: (i) for 2KXA, one constraint between Hα hydrogen and carbonyl oxygen462

of Ala-5 and Met-17, enforcing the pairing of the two α-helices, (ii) for 2KSL, three463

constraints between Carbons β of Cys-7 and Cys-37, of Cys-23 and Cys-33 and of464

Cys-26 and Cys-46, corresponding to the formation of the three disulphide bridges.465

For all calculations, except the one of 2JMY with the α helix defined along the466

whole sequence, the obtained conformations were filtered according to the coordi-467

nate root mean-squared deviation (RMSD: 1.5 Å) with respect to the previously468

obtained conformation in the iBP procedure. Enforcing an RMSD value larger than469

1.5 Å between two successively stored conformations, avoids an oversampling of the470

conformational space. Each calculation was stopped after storing 10000 filtered con-471

formations.472

For our three examples, five calculations were performed in total: three on 2JMY473

with different definitions of the α helix (residues 1-15, 3-13 and 5-11), and one each474

for 2KXA and 2KSL. For the first calculation on 2JMY, one conformation was475

obtained and saved. The second and third calculations on 2JMY were quite short,476

of the order of minutes (Table 2), which is due to the small size of the corresponding477

tree. For the 2KXA and 2KSL calculations, 10000 conformations were obtained in478

about 30 mins of calculation. Large total numbers of conformations were generated:479

this number increases from ∼634,000 (2JMY 1) up to ∼3,400,000 (2KXA) with the480

size of the considered problem, depending on the number of residues and on the481

number of constraints. Despite 2KSL being the largest example, the second smallest482

number of conformations was generated, which is the sign of a severe pruning arising483

from a rather restricted conformational space.484

The reliability of the obtained conformations was checked in three ways. First,485

the whole set of NMR constraints deposited along with the PDB entries and involv-486

ing backbone hydrogens, were probed on the conformations. Second, the quality487

of the obtained conformations was checked using PROCHECK [60] analysis of the488

Ramachandran plot. Third, the obtained conformations were clustered with an un-489

supervised clustering method, namely the self-organizing map or SOM [61–63], in490

order to investigate the properties of sampled conformations.491
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The agreement of the obtained conformations with the backbone NMR constraints492

deposited with the PDB structures was checked by calculating the distances between493

the backbone hydrogens in each obtained conformation. The distances larger than494

the upper bound of the constraint correspond to violations of this constraint. The495

mean number of violated constraints along with the mean value of the difference to496

the upper bound for these constraints were calculated on all conformations (Table497

2). For the 2JMY calculation with the 1-15 α helix definition, no violation of the498

NMR constraints could be observed. As expected, when the α helix definition is499

reduced (2JMY 1 and 2JMY 2), the average number of violations increases as well500

as the average maximum violation. Not surprisingly, the most violated constraints501

involve residues located at the N and C terminal parts of the α-helix, TRP-2,502

PHE-5, LYS-3, LYS-6 and VAL-11, VAL-14, LEU-15 for 2JMY 1 and 2JMY 2. The503

largest violations and number of violations are of the same order or value for 2KXA504

than for 2JMY 1 and 2JMY 2. In contrast, the largest violations and number of505

violations are observed for 2KSL and involve residues CYS-33, GLU-34, PHE-38,506

TYR-43. Such over-restraining of NMR structures have been put in evidence in507

the past, through molecular dynamics simulations [64] and analysis of the structure508

quality [65].509

The average number of violations is similar for 2JMY 2, 2KXA and 2KSL, but510

the average maximum violation for 2KSL is twice as large as that for 2JMY 2 and511

2KXA. This might be due to the very restrained conformations of 2KSL, which512

contain three disulphide bridges. Due to this restrained conformation, the NMR513

constraint list is probably more prone to contain inconsistencies, and large mechan-514

ical strain can be stored in the structure if one uses an optimization procedure such515

as simulated annealing. In contrast, no mechanical strain whatsoever is generated by516

the iBP algorithm, and the obtained conformations might have a stronger tendency517

to deviate from the PDB conformations.518

For each example, the obtained conformations were compared to the first confor-519

mation deposited in the PDB. Minimum RMSD values in the range 1.1-2.1 Å were520

obtained for all targets, except 2KSL for which the minimum RMSD value was 3.0521

Å. Thus the Branch-and-Prune algorithm was able to capture conformations close522

to the PDB conformations, the larger value obtained for 2KSL arising from the523

larger mechanical strain quoted above.524

For each calculation, the conformation displaying the smallest number of NMR525

constraint violations was compared to the first conformation deposited in the PDB.526

The RMSD values are smaller than 1.5 Å for 2JMY and 2KXA. This shows that,527

in the context of the iBP algorithm, the measured NMR constraints also push528

the structure toward the PDB structure. For 2JMY 1 and 2JMY 2, the RMSD529

value increases since the definition of the α helical region is shorter. For 2KSL, the530

conformation displaying the smallest number of constraint violations, displays an531

RMSD of 3.5Å with the PDB first conformation, which agrees with the maximum532

number of violations observed for this protein and with the minimum RMSD with533

the PDB structure analyzed above.534

From the PROCHECK [60] analysis, the percentage of residues located in core and535

allowed Ramachandran regions, is larger than 95% for all targets except 2JMY 1,536

2JMY 2, for which the percentages are about 80% due to the reduced definition of537
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the α helix. For all targets, the percentage of residues in disallowed regions is equal538

to zero. The relatively important percentage of residues located in the allowed539

region may arise from the systematic exploration performed by the Branch-and-540

Prune algorithm, the strict nature of the constraints, and the nature of the pruning541

devices.542

In order to further probe the robustness of the proposed algorithm, iBP calcula-543

tions on 2KXA and 2KSL have been performed, using input data degraded in the544

following way: (i) the length of each α helix has been reduced by 1 residues at each545

extremity, (ii) the lower and upper bounds of the long-range distance constraints546

have been increased by 0.5 Å. The introduction of this noise into the α helical and547

long-range constraints makes the iBP solution moving apart from the PDB struc-548

ture, as the minimum RMSD to PDB structure changes from 1.1 to 2 Å for 2KXA,549

and from 3.0 to 4.3 Å for 2KSL. Nevertheless, the quality of the Ramachandran550

diagram remains satisfying, with 93.3% and 95.4% of the residues located in the551

core and allowed regions of the Ramachandran plot for 2KXA and 2KSL.552

The conformations were clustered using a self-organizing map (SOM) approach553

[61, 62], on which the coordinate RMSD values between the conformers obtained554

by Branch-and-Prune and the corresponding PDB structure, were projected on the555

SOMs (Figure 6). These RMSD values lay in the 1.3-3.2 Å range for 2JMY 1, in the556

2.4-4.9 Å range for 2JMY 2, in the 1.5-4.0 Å range for 2KXA, and in the 3.2-6.0 Å557

for 2KSL.558

In the SOMs for the four calculations (Figure 6), the RMSD values are colored559

according to their RMSD from the PDB entry, violet color indicating values smaller560

than the median value of the sampled RMSD value, green color indicating RMSD561

values larger than this median value. For 2JMY 1, 2KXA and 2KSL, a larger num-562

ber of neurons of the SOMs belongs to the second group, which is the sign of an563

enhanced sampling of the conformational space with respect to the region sampled564

by simulated annealing. For 2JMY 2, the inverse picture is observed, which may565

arise from the more limited conformational space available to be sampled for a566

unique α-helix.567

In 2KSL and 2KXA SOMs, the protein conformations corresponding to the region568

displaying the smallest coordinate RMSD values with respect to the PDB structure,569

were extracted (Figure 7). These sets of conformers are similar to the superimposed570

conformations obtained in a usual NMR calculation.571

Conclusions572

We proposed here a Branch-and-Prune algorithm (iBP) to solve the Distance Ge-573

ometry Problem, in order to sample exhaustively the conformational space of the574

backbone of α-helical proteins. The iBP algorithm bears a very slight reminiscence575

to variable target function approaches for example implemented in DISMAN [66],576

due to the sequential nature of introducing constraints and non-bonded interactions.577

However, the precise way of introducing the constraints and non-bonded interac-578

tions differs significantly, and DISMAN does not systematically search space but is579

an optimization approach.580

We introduced new pruning devices integrated in the iBP algorithm for DGP581

with intervals and we tested our iBP implementation on the backbones of α-helical582
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proteins. Several pruning devices have been designed to enforce amino-acid chirality,583

α-helix geometry and van der Waals steric hindrance. The algorithm allowed to584

efficiently reconstruct backbone conformations of three α-helical peptides, of various585

sizes, and for which the structure were previously solved by NMR. The obtained586

solutions satisfy most of the NMR constraints involving backbone hydrogen bonds,587

and display very acceptable Ramachandran statistics. The present work represents588

a first successful step on the way to reconstruct protein structures using a branch-589

and-prune algorithm applied to the Distance Geometry problem.590

Applications where this approach could have significant advantages are cases591

where there are few distances defining the tertiary structure of a protein, where592

it is important to characterize the space of all solutions. It might also be useful as593

part iterative automated assignment algorithms such as ARIA [67], CYANA [68]594

or UNIO [69], where in a first iteration all solutions compatible with a few unam-595

biguous long-range constraints could be generated to reduce the ambiguity of the596

remaining constraints. Another application of the approach proposed here would be597

to provide input molecular conformations to model the structure of multi-subunit598

complexes into an electron microscopy density map [70].599

Some limitations of the current version of iBP prevent for the moment its use600

with real nuclear Overhauser effect (NOE) data. These limitations are the use of601

unambiguous distance constraints, the non-inclusion of protein side-chains, the loss602

of information intervals and the appropriate weighting of the various constraints603

in order to overcome the inconsistencies contained among the whole constraint set.604

Protein side-chains can be added to the protein backbone afterward. The discretiza-605

tion of circle arcs could be tackled using algebraic geometry and geometric algebra606

approaches [71]. The Bayesian approach [72] developed for the objective weighting607

of various NMR contraints according to the data quality could be used to alle-608

viate the inconsistency problems. The use of unambiguous distance constraints is609

probably the most unavoidable aspect of the current set-up of the algorithm.610
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Tables785

Table 1 Van der Waals radii (see [26] and [27]).

atom O H C N
rvdw (Å) 1.4 1.0 1.7 1.5
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Table 2 Analysis of conformations obtained by the branch-and-pruning algorithm on the three
proteins targets: 2JMY, 2KXA and 2KSL. 2JMY 1 and 2JMY 2 correspond to the target 2JMY
with shorter definitions of α helices. The total number of generated conformations is given, along
with the number conformations filtered according to RMSD values.

Proteins 2JMY 2JMY 1 2JMY 2 2KXA 2KSL
Number of
residues 15 15 15 24 51

Number of
vertices 107 107 107 170 359

Definition
of α helices 1-15 3-13 5-11 1-11, 13-23 4-11, 13-27,

29-36, 41-50
Position

tolerance (Å) 0.2 0.2 0.2 0.2 0.2
Angle

tolerance (◦) 2 2 2 4 4
b value 4 4 4 8 4

Number of
long-range
constraints 0 0 0 1 3

Number of saved
conformations 1 10000 10000 10000 10000

Number of generated
conformations 1 633,937 928,399 3,380,964 491,498

CPU time - 1 min 1 min 25 min 31 min
Number of violated
constraints (> 1Å) 0 4.0 ± 2.1 11.6 ± 3.6 9.6 ± 2.9 12.8 ± 1.1

Maximum
violation (Å) 0 3.3 ± 1.4 4.8 ± 0.7 3.7 ± 1.0 8.1 ± 0.6

Mininum RMSD
from PDB structure (Å) 1.4 1.3 2.1 1.1 3.0

RMSD from PDB structure
for minimum violated
conformations (Å) 1.4 2.9 2.8 1.3 3.5

PROCHECK
core residues 100 65.7 ± 25.9 49.2 ± 7.6 60.4 ± 8.1 76.9 ± 2.4

allowed residues 0 17.9 ± 9.7 40.9 ± 8.3 39.6 ± 8.0 21.3 ± 2.8
gen.allow. residues 0 3.6 ± 4.8 9.9 ± 7.2 0.0 ± 0.0 1.9 ± 1.7

disall. residues 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Figures786

Figure 1 The iBP recursive algorithm. Description of the iBP algorithm.

Figure 2 The branch-and-prune search tree. Example of branch-and-prune search tree
exploration. With solid line, we depict the path currently in use, with dotted arcs pruned paths,
and with dashed arcs paths not yet explored. The squared node corresponds to a feasible solution.

Figure 3 Order Pato of the atoms parsed during the branch-and-prune algorithm.

Figure 4 Intersection of three spheres. Intersection of three spheres, colored in yellow, green and
cyan. The two points produced by the intersection are indicated with red spots.
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Figure 5 Discretization of the distance constraints. An example of discretization of the distance
di,i−3. The solid circle represents the result of the intersection of the spheres centered in
i− 1, i− 2 with radii di,i−1, di,i−2, respectively. The distance di,i−3 is discretized accordingly to
Equation (2) with b = 5: dotted circles represent the intersections of spheres centered in i− 3

with radii in d̃i with the plane containing the i− 3, i− 2 and i− 1. Thick gray arcs represent the
feasible regions for the atom i.

Figure 6 Clustering of the conformations obtained by the iBP algorithm. Self-organizing maps
describing the clustering of the conformations obtained by the iBP algorithm on 2JMY, 2KXA
and 2KSL. The contour plots (lines) represent the local similarity between the clustered
conformations. The color scales (on plot left) extend from blue to red (from very similar to very
dissimilar conformations). The small red points are drawn on the SOM neuron for which the
largest local similarity is observed between conformations. Each SOM neuron is colored according
to the average value of the coordinates RMSD of the neuron conformations with respect to the
PDB structure. The color scales extend (on plot right) from purple to green (from very similar to
very dissimilar to the PDB structure). The similarity between SOM neurons as well as the RMSD
to the PDB structure are expressed in Å for comparison purposes.

Figure 7 Superimposed 2KXA and 2KSL conformations. Superimposition of 2KXA and 2KSL
conformations extracted from the SOM, as the ones displaying the minimum coordinates RMSD
with respect to the first conformer of the corresponding PDB structures. The N and C terminal
extremities are labeled, and the conformations, drawn in cartoon, are colored from blue to red,
according to the conformational index.
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Algorithm 1: The iBP recursive algorithm.

Input: atom index l, total number of atoms n, solution x

1 if l = n then
/* Solution found! */

2 return

/* Branching */

3 compute set Pl of possible position of atom l;
4 foreach p ∈ Pl do

/* Check for infeasibility (Pruning) */

5 if p is feasible then

/* Value accepted */

6 xl ← p;

/* Go to the next level */

7 iBP (l + 1, n, x);

8 end

Figure 1: The iBP recursive algorithm. Description of the iBP algorithm.
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Figure 2: The branch-and-prune search tree. Example of branch-and-
prune search tree exploration. With solid line, we depict the path cur-
rently in use, with dotted arcs pruned paths, and with dashed arcs paths
not yet explored. The squared node corresponds to a feasible solution.
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Figure 3: Order of the atoms Pato parsed during the branch-and-prune
algorithm.
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Figure 4: Intersection of three spheres. Intersection of three spheres,
colored in yellow, green and cyan. The two points produced by the in-
tersection are indicated with red spots.
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Figure 5: Discretization of the distance restraints. An example of dis-
cretization of the distance di,i−3. The solid circle represents the result of
the intersection of the spheres centered in i− 1, i− 2 with radii di,i−1, di,i−2,
respectively. The distance di,i−3 is discretized accordingly to Equation (??)
with b = 5: dotted circles represent the intersections of spheres centered
in i− 3 with radii in d̃i with the plane containing the i− 3, i− 2 and i− 1.
Thick gray arcs represent the feasible regions for the atom i.
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Figure 6: Clustering of the conformations obtained by the iBP algorithm.
Self-organizing maps describing the clustering of the conformations ob-
tained by the iBP algorithm on 2JMY, 2KXA and 2KSL. The contour
plots (lines) represent the local similarity between the clustered confor-
mations. The color scales (on plot left) extend from blue to red (from
very similar to very dissimilar conformations). The small red points are
drawn on the SOM neuron for which the largest local similarity is ob-
served between conformations. Each SOM neuron is colored according
to the average value of the coordinates RMSD of the neuron conforma-
tions with respect to the PDB structure. The color scales extend (on
plot right) from purple to green (from very similar to very dissimilar to
the PDB structure). The similarity between SOM neurons as well as the
RMSD to the PDB structure are expressed in Å for comparison purposes.
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Figure 7: Superimposed 2KXA and 2KSL conformations. Superimposi-
tion of 2KXA and 2KSL conformations extracted from the SOM, as the
ones displaying the minimum coordinates RMSD with respect to the first
conformer of the corresponding PDB structures. The N and C terminal
extremities are labeled, and the conformations, drawn in cartoon, are
colored from blue to red, according to the conformational index.
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