S. Albers and M. Pohlschroder, Diversity of archaeal type IV pilin-like structures. 613 Extremophiles, pp.403-410, 2009.

M. Ayers, P. Howell, and L. Burrows, Architecture of the type II secretion and type IV pilus machineries, Future Microbiology, vol.5, issue.8, pp.1203-1218, 2010.
DOI : 10.2217/fmb.10.76

D. Birdsell and E. Cota-robles, Production and ultrastructure of lysozyme and 617 ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli, J Bacteriol, vol.618, issue.93, pp.427-437, 1967.

P. Bjelkmar, P. Larsson, M. Cuendet, B. Hess, and E. Lindahl, Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models, Journal of Chemical Theory and Computation, vol.6, issue.2, pp.459-466, 2010.
DOI : 10.1021/ct900549r

M. Campos, M. Nilges, D. Cisneros, and O. Francetic, Detailed structural and assembly 627 model of the type II secretion pilus from sparse data, Proc Natl Acad Sci, vol.107, pp.628-13081, 2010.

E. Carbonnelle, S. Helaine, X. Nassif, and V. Pelicic, A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili, Molecular Microbiology, vol.181, issue.6, pp.1510-1522, 2006.
DOI : 10.1093/emboj/19.23.6408

I. Chen, P. Christie, and D. Dubnau, The Ins and Outs of DNA Transfer in Bacteria, Science, vol.310, issue.5753, pp.1456-1460, 2005.
DOI : 10.1126/science.1114021

N. Cianciotto, Type II secretion: a protein secretion system for all seasons. Trends 635 Microbiol, pp.581-588, 2005.

L. Craig and L. J. , Type IV pili: paradoxes in form and function, Current Opinion in Structural Biology, vol.18, issue.2, pp.267-277, 2008.
DOI : 10.1016/j.sbi.2007.12.009

R. Voulhoux, The XcpV/GspI pseudopilin has a central role in the assembly of a 646 quaternary complex within the T2SS pseudopilus, J Biol Chem, vol.284, pp.34580-34589, 2009.

E. Durand, G. Michel, R. Voulhoux, J. Kurner, A. Bernadac et al., XcpX controls 648 biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus, J Biol, vol.649, issue.280, pp.31378-31389, 2005.

K. Forest, The type II secretion arrowhead: the structure of GspI???GspJ???GspK, Nature Structural & Molecular Biology, vol.15, issue.5, p.651, 2008.
DOI : 10.1016/S0959-440X(00)00129-9

O. Francetic, N. Buddelmeijer, S. Lewenza, C. Kumamoto, and A. Pugsley, Signal Recognition Particle-Dependent Inner Membrane Targeting of the PulG Pseudopilin Component of a Type II Secretion System, Journal of Bacteriology, vol.189, issue.5, pp.1783-1793, 2007.
DOI : 10.1128/JB.01230-06

URL : https://hal.archives-ouvertes.fr/hal-00138935

O. Francetic and A. Pugsley, Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca, Journal of Bacteriology, vol.187, issue.20, pp.7045-657, 2005.
DOI : 10.1128/JB.187.20.7045-7055.2005

C. Giltner, M. Habash, and L. Burrows, Pseudomonas aeruginosa Minor Pilins Are Incorporated into Type IV Pili, Journal of Molecular Biology, vol.398, issue.3, pp.444-461, 2010.
DOI : 10.1016/j.jmb.2010.03.028

M. Gray, M. Bagdasarian, W. Hol, and M. Sandkvist, In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae, Molecular Microbiology, vol.377, issue.3, pp.786-798, 2011.
DOI : 10.1111/j.1365-2958.2010.07487.x

J. Hansen and K. Forest, Type IV Pilin Structures: Insights on Shared Architecture, Fiber Assembly, Receptor Binding and Type II Secretion, Journal of Molecular Microbiology and Biotechnology, vol.11, issue.3-5, pp.192-207, 2006.
DOI : 10.1159/000094054

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4:?? Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.
DOI : 10.1021/ct700301q

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proceedings of the National Academy of Sciences, vol.95, issue.10, pp.5752-671, 1998.
DOI : 10.1073/pnas.95.10.5752

K. Korotkov and W. Hol, Structure of the GspK-GspI-GspJ complex from the 676 enterotoxigenic Escherichia coli type 2 secretion system, Nat Struct Mol Biol, vol.15, pp.677-462, 2008.

J. Lemkul and D. Bevan, Characterization of interactions between PilA from 679 Pseudomonas aeruginosa strain K and a model membrane, J Phys Chem B, vol.115, pp.680-8004, 2011.

J. Lopilato, S. Bortner, and J. Beckwith, Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives, MGG Molecular & General Genetics, vol.36, issue.2, pp.285-290, 1986.
DOI : 10.1007/BF00430440

J. Smith, R. Stote, J. Straub, M. Watanabe, and J. Wiorkiewicz-kuczera, Yin D and Karplus 688 M (1998) All-atom empirical potential for molecular modeling and dynamics studies 689 of proteins, J Phys Chem B, vol.102, pp.3586-3616

C. Ramirez, I. Vorobyov, and R. Pastor, Update of the CHARMM All-Atom 692, 2010.

B. Maier, M. Koomey, and M. Sheetz, A force-dependent switch reverses type IV pilus retraction, Proceedings of the National Academy of Sciences, vol.101, issue.30, pp.10961-10966, 2004.
DOI : 10.1073/pnas.0402305101

T. Maniatis, E. Fritsch, and J. S. , Molecular cloning: a laboratory manual. Cold Spring 697 Harbor Laboratory, p.698, 1982.

J. Miller, Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold 699 Spring Harbor, p.700, 1972.

A. Misic, K. Satyshur, and K. Forest, P. aeruginosa PilT structures with and 701 without nucleotide reveal a dynamic type IV pilus retraction motor, J Mol Biol, vol.400, pp.702-1011, 2010.

V. Pelicic, Type IV pili: e pluribus unum?, Molecular Microbiology, vol.181, issue.4, pp.827-837, 2008.
DOI : 10.1172/JCI30727

O. Possot, G. Vignon, N. Bomchil, F. Ebel, and A. Pugsley, Multiple Interactions between Pullulanase Secreton Components Involved in Stabilization and Cytoplasmic Membrane Association of PulE, Journal of Bacteriology, vol.182, issue.8, pp.2142-2152, 2000.
DOI : 10.1128/JB.182.8.2142-2152.2000

A. Pugsley, Processing and methylation of PulG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca, Molecular Microbiology, vol.90, issue.2, pp.295-308, 1993.
DOI : 10.1016/0378-1119(87)90365-9

A. Pugsley, The complete general secretory pathway in gram-negative bacteria. 713, Microbiol. Rev, vol.57, pp.50-108, 1993.

B. Py, L. Loiseau, and F. Barras, An inner membrane platform in the type II secretion machinery of Gram-negative bacteria, EMBO reports, vol.143, issue.3, pp.244-248, 2001.
DOI : 10.1093/embo-reports/kve042

L. Randall and S. Hardy, Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E. coli, Cell, vol.46, issue.6, pp.921-928, 0718.
DOI : 10.1016/0092-8674(86)90074-7

M. Sandkvist, Type II Secretion and Pathogenesis, Infection and Immunity, vol.69, issue.6, pp.3523-3535, 2001.
DOI : 10.1128/IAI.69.6.3523-3535.2001

N. Sauvonnet, G. Vignon, A. Pugsley, and P. Gounon, Pilus formation and protein secretion by the same machinery in Escherichia coli, The EMBO Journal, vol.96, issue.10, pp.2221-2228, 2000.
DOI : 10.1093/emboj/19.10.2221

H. Schagger, V. Jagow, and G. , Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Analytical Biochemistry, vol.166, issue.2, pp.368-379, 1987.
DOI : 10.1016/0003-2697(87)90587-2

G. Vignon, R. Kohler, E. Larquet, S. Giroux, M. Prevost et al., Type IV-Like Pili Formed by the Type II Secreton: Specificity, Composition, Bundling, Polar Localization, and Surface Presentation of Peptides, Journal of Bacteriology, vol.185, issue.11, pp.3416-3428, 2003.
DOI : 10.1128/JB.185.11.3416-3428.2003

H. Winther-larsen, W. M. Dunham, S. Van-putten, J. Dorward, D. Lovold et al., A conserved set of pilin-like molecules controls type IV pilus 730 dynamics and organelle-associated functions in Neisseria gonorrhoeae, Mol 731 Microbiol, pp.903-917, 2005.

G. Gspi-gspj, GspK simulations (red) and the six main clusters of the GspJ alone 798 simulation (gray), shown in the same view as (A) (C) Representative structures of GspI, p.799