S. Nyamweya, A. Hegedus, J. A. , R. , S. Flanagan et al., Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis, Reviews in Medical Virology, vol.18, issue.Suppl 2, pp.221-261, 2013.
DOI : 10.1002/rmv.1739

L. Menendez-arias and M. Alvarez, Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection, Antiviral Research, vol.102, pp.70-86, 2014.
DOI : 10.1016/j.antiviral.2013.12.001

M. Van-der-loeff, N. Larke, S. Kaye, N. Berry, K. Ariyoshi et al., Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village, Retrovirology, vol.7, issue.1, p.46, 2010.
DOI : 10.1186/1742-4690-7-46

J. Esbjornsson, F. Mansson, A. Kvist, P. Isberg, S. Nowroozalizadeh et al., Inhibition of HIV-1 Disease Progression by Contemporaneous HIV-2 Infection, New England Journal of Medicine, vol.367, issue.3, pp.224-256, 2012.
DOI : 10.1056/NEJMoa1113244

R. Thiebaut, S. Matheron, A. Taieb, F. Brun-vezinet, and G. Chene, Long-term nonprogressors and elite controllers in the ANRS CO5 HIV-2 cohort, AIDS, vol.25, issue.6, pp.865-872, 2011.
DOI : 10.1097/QAD.0b013e328344892e

A. Macneil, A. Sarr, J. Sankale, S. Meloni, S. Mboup et al., Direct Evidence of Lower Viral Replication Rates In Vivo in Human Immunodeficiency Virus Type 2 (HIV-2) Infection than in HIV-1 Infection, Journal of Virology, vol.81, issue.10, pp.5325-5355, 2007.
DOI : 10.1128/JVI.02625-06

S. Popper, A. Sarr, K. Travers, A. Gueye-ndiaye, S. Mboup et al., Lower Human Immunodeficiency Virus (HIV) Type 2 Viral Load Reflects the Difference in Pathogenicity of HIV???1 and HIV???2, The Journal of Infectious Diseases, vol.180, issue.4, pp.1116-1137, 1999.
DOI : 10.1086/315010

G. Gottlieb, S. Hawes, N. Kiviat, and P. Sow, Differences in proviral DNA load between HIV-1-infected and HIV-2-infected patients, AIDS, vol.22, issue.11, pp.1379-80, 2008.
DOI : 10.1097/QAD.0b013e328303496d

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648216

M. Gueudin, F. Damond, J. Braun, A. Taieb, V. Lemee et al., Differences in proviral DNA load between HIV-1- and HIV-2-infected patients, AIDS, vol.22, issue.2, pp.211-216, 2008.
DOI : 10.1097/QAD.0b013e3282f42429

P. Michel, A. Balde, C. Roussilhon, G. Aribot, J. Sarthou et al., Microglobulin Concentration and Disease Evolution, The Journal of Infectious Diseases, vol.181, issue.1, pp.64-75, 2000.
DOI : 10.1086/315170

R. Thiebaut, C. Charpentier, F. Damond, A. Taieb, R. Antoine et al., Association of Soluble CD14 and Inflammatory Biomarkers With HIV-2 Disease Progression, Clinical Infectious Diseases, vol.55, issue.10, pp.1417-1442, 2012.
DOI : 10.1093/cid/cis708

A. Leligdowicz, J. Feldmann, J. A. Cotten, M. Dong, T. Mcmichael et al., Direct Relationship between Virus Load and Systemic Immune Activation in HIV???2 Infection, The Journal of Infectious Diseases, vol.201, issue.1, pp.114-136, 2010.
DOI : 10.1086/648733

R. Cavaleiro, R. Tendeiro, R. Foxall, R. Soares, A. Baptista et al., Monocyte and Myeloid Dendritic Cell Activation Occurs Throughout HIV Type 2 Infection, an Attenuated Form of HIV Disease, Journal of Infectious Diseases, vol.207, issue.11, pp.1730-1772, 2013.
DOI : 10.1093/infdis/jit085

P. Kanki, R. , and S. , The protective effect of HIV-2 infection, AIDS, vol.28, issue.7, pp.1065-1072, 2014.
DOI : 10.1097/QAD.0000000000000209

J. Esbjornsson, F. Mansson, A. Kvist, P. Isberg, S. Nowroozalizadeh et al., Effect of HIV-2 infection on HIV-1 disease progression and mortality, AIDS, vol.28, issue.4, pp.614-619, 2014.
DOI : 10.1097/QAD.0000000000000142

S. Rodriguez, A. Sarr, A. Macneil, S. Thakore-meloni, A. Gueye-ndiaye et al., Comparison of Heterologous Neutralizing Antibody Responses of Human Immunodeficiency Virus Type 1 (HIV-1)- and HIV-2-Infected Senegalese Patients: Distinct Patterns of Breadth and Magnitude Distinguish HIV-1 and HIV-2 Infections, Journal of Virology, vol.81, issue.10, pp.5331-5339, 2007.
DOI : 10.1128/JVI.02789-06

Y. Shi, E. Brandin, E. Vincic, M. Jansson, A. Blaxhult et al., Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation, Journal of General Virology, vol.86, issue.12, pp.3385-96, 2005.
DOI : 10.1099/vir.0.81259-0

R. Kong, H. Li, I. Georgiev, A. Changela, F. Bibollet-ruche et al., Epitope Mapping of Broadly Neutralizing HIV-2 Human Monoclonal Antibodies, Journal of Virology, vol.86, issue.22, pp.12115-12143, 2012.
DOI : 10.1128/JVI.01632-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486499

R. Kong, H. Li, F. Bibollet-ruche, J. Decker, N. Zheng et al., Broad and Potent Neutralizing Antibody Responses Elicited in Natural HIV-2 Infection, Journal of Virology, vol.86, issue.2, pp.947-60, 2012.
DOI : 10.1128/JVI.06155-11

H. Whittle, K. Ariyoshi, R. , and S. , HIV-2 and T cell recognition, Current Opinion in Immunology, vol.10, issue.4, pp.382-389, 1998.
DOI : 10.1016/S0952-7915(98)80108-8

M. Duvall, J. A. Dong, T. Brenchley, J. Alabi, A. Jeffries et al., Maintenance of HIV-Specific CD4+ T Cell Help Distinguishes HIV-2 from HIV-1 Infection, The Journal of Immunology, vol.176, issue.11, pp.6973-81, 2006.
DOI : 10.4049/jimmunol.176.11.6973

M. Duvall, M. Precopio, D. Ambrozak, J. A. Mcmichael, A. Whittle et al., Polyfunctional T cell responses are a hallmark of HIV-2 infection, European Journal of Immunology, vol.313, issue.2, pp.350-63, 2008.
DOI : 10.1002/eji.200737768

S. Cordeil, X. Nguyen, G. Berger, S. Durand, M. Ainouze et al., Evidence for a Different Susceptibility of Primate Lentiviruses to Type I Interferons, Journal of Virology, vol.87, issue.5, pp.2587-96, 2013.
DOI : 10.1128/JVI.02553-12

URL : https://hal.archives-ouvertes.fr/hal-00965877

L. Ylinen, Z. Keckesova, S. Wilson, S. Ranasinghe, and G. Towers, Differential Restriction of Human Immunodeficiency Virus Type 2 and Simian Immunodeficiency Virus SIVmac by TRIM5?? Alleles, Journal of Virology, vol.79, issue.18, pp.11580-11587, 2005.
DOI : 10.1128/JVI.79.18.11580-11587.2005

C. Onyango, A. Leligdowicz, M. Yokoyama, H. Sato, H. Song et al., HIV-2 capsids distinguish high and low virus load patients in a West African community cohort, Vaccine, vol.28, issue.2, pp.60-67, 2010.
DOI : 10.1016/j.vaccine.2009.08.060

I. Harrison and A. Mcknight, Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2, Virology, vol.415, issue.1, pp.47-55, 2011.
DOI : 10.1016/j.virol.2011.04.001

D. Marchant, S. Neil, K. Aubin, C. Schmitz, and A. Mcknight, An Envelope-Determined, pH-Independent Endocytic Route of Viral Entry Determines the Susceptibility of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 to Lv2 Restriction, Journal of Virology, vol.79, issue.15, pp.9410-9418, 2005.
DOI : 10.1128/JVI.79.15.9410-9418.2005

S. Neil, The Antiviral Activities of Tetherin, Curr Top Microbiol Immunol, vol.371, pp.67-104, 2013.
DOI : 10.1007/978-3-642-37765-5_3

D. Hotter, D. Sauter, and F. Kirchhoff, Emerging Role of the Host Restriction Factor Tetherin in Viral Immune Sensing, Journal of Molecular Biology, vol.425, issue.24, pp.4956-64, 2013.
DOI : 10.1016/j.jmb.2013.09.029

K. Marno, B. Ogunkolade, C. Pade, N. Oliveira, O. Sullivan et al., Novel restriction factor RNA-associated early-stage anti-viral factor (REAF) inhibits human and simian immunodeficiency viruses, Retrovirology, vol.11, issue.3, 2014.
DOI : 10.1186/1742-4690-11-3

URL : http://doi.org/10.1186/1742-4690-11-3

B. Descours, A. Cribier, C. Chable-bessia, D. Ayinde, G. Rice et al., SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells, Retrovirology, vol.9, issue.1, p.87, 2012.
DOI : 10.1002/humu.22087

URL : https://hal.archives-ouvertes.fr/pasteur-00750469

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-bessia et al., SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.38, issue.7353, pp.654-661, 2011.
DOI : 10.1038/nature10117

URL : https://hal.archives-ouvertes.fr/hal-00616451

H. Lahouassa, W. Daddacha, H. Hofmann, D. Ayinde, E. Logue et al., SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates, Nature Immunology, vol.69, issue.3, pp.223-231, 2012.
DOI : 10.1006/viro.1995.1016

URL : https://hal.archives-ouvertes.fr/hal-00675672

D. Ayinde, N. Casartelli, and O. Schwartz, Restricting HIV the SAMHD1 way: through nucleotide starvation, Nature Reviews Microbiology, vol.16, issue.10, pp.675-80, 2012.
DOI : 10.1038/nrmicro2862

URL : https://hal.archives-ouvertes.fr/pasteur-01110079

I. Puigdomenech, N. Casartelli, F. Porrot, and O. Schwartz, SAMHD1 Restricts HIV-1 Cell-to-Cell Transmission and Limits Immune Detection in Monocyte-Derived Dendritic Cells, Journal of Virology, vol.87, issue.5, pp.2846-56, 2013.
DOI : 10.1128/JVI.02514-12

URL : https://hal.archives-ouvertes.fr/pasteur-01109474

H. Baldauf, X. Pan, E. Erikson, S. Schmidt, W. Daddacha et al., SAMHD1 restricts HIV-1 infection in resting CD4+ T cells, Nature Medicine, vol.9, issue.11, pp.1682-1689, 2012.
DOI : 10.1182/blood-2002-07-2224

J. Ryoo, J. Choi, C. Oh, S. Kim, M. Seo et al., The ribonuclease activity of SAMHD1 is required for HIV-1 restriction, Nature Medicine, vol.4, issue.8, pp.936-977, 2014.
DOI : 10.1038/nmeth.1923

A. Cribier, B. Descours, A. Valadao, N. Laguette, and M. Benkirane, Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell reports, pp.1036-1079, 2013.

T. White, A. Brandariz-nunez, J. Valle-casuso, A. S. Nguyen, L. Kim et al., The Retroviral Restriction Ability of SAMHD1, but Not Its Deoxynucleotide Triphosphohydrolase Activity, Is Regulated by Phosphorylation, Cell Host & Microbe, vol.13, issue.4, pp.441-51, 2013.
DOI : 10.1016/j.chom.2013.03.005

S. Welbourn, S. Dutta, O. Semmes, and K. Strebel, Restriction of Virus Infection but Not Catalytic dNTPase Activity Is Regulated by Phosphorylation of SAMHD1, Journal of Virology, vol.87, issue.21, pp.11516-11540, 2013.
DOI : 10.1128/JVI.01642-13

H. Yu, S. Usmani, A. Borch, J. Kramer, C. Sturzel et al., The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals, Retrovirology, vol.10, issue.1, p.27, 2013.
DOI : 10.1128/JVI.06856-11

X. Lahaye, T. Satoh, M. Gentili, S. Cerboni, C. Conrad et al., The Capsids of HIV-1 and HIV-2 Determine Immune Detection of the Viral cDNA by the Innate Sensor cGAS in Dendritic Cells, Immunity, vol.39, issue.6, pp.1132-1174, 2013.
DOI : 10.1016/j.immuni.2013.11.002

URL : https://hal.archives-ouvertes.fr/inserm-00959028

T. Schaller, C. Goujon, M. Malim, . Aids, and . Hiv, HIV Interplay with SAMHD1, Science, vol.335, issue.6074, pp.1313-1317, 2012.
DOI : 10.1126/science.1221057

N. Manel, B. Hogstad, Y. Wang, D. Levy, D. Unutmaz et al., A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells, Nature, vol.78, issue.7312, pp.214-221, 2010.
DOI : 10.1038/nature09337

N. Manel and D. Littman, Hiding in Plain Sight: How HIV Evades Innate Immune Responses, Cell, vol.147, issue.2, pp.271-275, 2011.
DOI : 10.1016/j.cell.2011.09.010

X. Cheng and L. Ratner, HIV-2 Vpx Protein Interacts with Interferon Regulatory Factor 5 (IRF5) and Inhibits Its Function, Journal of Biological Chemistry, vol.289, issue.13, pp.9146-57, 2014.
DOI : 10.1074/jbc.M113.534321

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979364

D. Marchant, S. Neil, and A. Mcknight, Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture, Journal of General Virology, vol.87, issue.2, pp.411-419, 2006.
DOI : 10.1099/vir.0.81391-0

C. Royle, D. Graham, S. Sharma, D. Fuchs, and A. Boasso, HIV-1 and HIV-2 Differentially Mature Plasmacytoid Dendritic Cells into IFN-Producing Cells or APCs, The Journal of Immunology, vol.193, issue.7, pp.3538-3586, 2014.
DOI : 10.4049/jimmunol.1400860

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822683

M. Guyader, M. Emerman, L. Montagnier, and K. Peden, VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes, EMBO J, vol.8, issue.4, pp.1169-75, 1989.

M. Kawamura, H. Sakai, and A. Adachi, Human Immunodeficiency Virus Vpx Is Required for the Early Phase of Replication in Peripheral Blood Mononuclear Cells, Microbiology and Immunology, vol.335, issue.11, pp.871-879, 1994.
DOI : 10.1111/j.1348-0421.1994.tb02140.x

A. Bergamaschi, D. Ayinde, A. David, L. Rouzic, E. Morel et al., The Human Immunodeficiency Virus Type 2 Vpx Protein Usurps the CUL4A-DDB1DCAF1 Ubiquitin Ligase To Overcome a Postentry Block in Macrophage Infection, Journal of Virology, vol.83, issue.10, pp.4854-60, 2009.
DOI : 10.1128/JVI.00187-09

M. Duvall, K. Lore, H. Blaak, D. Ambrozak, W. Adams et al., Dendritic Cells Are Less Susceptible to Human Immunodeficiency Virus Type 2 (HIV-2) Infection than to HIV-1 Infection, Journal of Virology, vol.81, issue.24, pp.13486-98, 2007.
DOI : 10.1128/JVI.00976-07

O. Haller and G. Kochs, Human MxA Protein: An Interferon-Induced Dynamin-Like GTPase with Broad Antiviral Activity, Journal of Interferon & Cytokine Research, vol.31, issue.1, pp.79-87, 2011.
DOI : 10.1089/jir.2010.0076

M. Cavrois, D. Noronha, C. Greene, and W. , A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes, Nature Biotechnology, vol.20, issue.11, pp.1151-1155, 2002.
DOI : 10.1038/nbt745

S. Reuter, P. Kaumanns, S. Buschhorn, and M. Dittmar, Role of HIV-2 envelope in Lv2-mediated restriction, Virology, vol.332, issue.1, pp.347-58, 2005.
DOI : 10.1016/j.virol.2004.11.025

M. Gueudin, J. Braun, J. Plantier, and F. Simon, HIV-1 and HIV-2 produce different amounts of 2-long terminal repeat circular DNA in vitro, AIDS, vol.22, issue.18, pp.2543-2548, 2008.
DOI : 10.1097/QAD.0b013e328319edab

M. Miller, M. Warmerdam, I. Gaston, W. Greene, and M. Feinberg, The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages, Journal of Experimental Medicine, vol.179, issue.1, pp.101-114, 1994.
DOI : 10.1084/jem.179.1.101

C. Spina, T. Kwoh, M. Chowers, J. Guatelli, and D. Richman, The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes, Journal of Experimental Medicine, vol.179, issue.1, pp.115-138, 1994.
DOI : 10.1084/jem.179.1.115

S. Amie, M. Daly, E. Noble, R. Schinazi, R. Bambara et al., Anti-HIV Host Factor SAMHD1 Regulates Viral Sensitivity to Nucleoside Reverse Transcriptase Inhibitors via Modulation of Cellular Deoxyribonucleoside Triphosphate (dNTP) Levels, Journal of Biological Chemistry, vol.288, issue.28, pp.20683-91, 2013.
DOI : 10.1074/jbc.M113.472159

L. Wu, Cellular and Biochemical Mechanisms of the Retroviral Restriction Factor SAMHD1. ISRN biochemistry, p.728392, 2013.

P. Boyer, P. Clark, and S. Hughes, HIV-1 and HIV-2 Reverse Transcriptases: Different Mechanisms of Resistance to Nucleoside Reverse Transcriptase Inhibitors, Journal of Virology, vol.86, issue.10, pp.5885-94, 2012.
DOI : 10.1128/JVI.06597-11

S. Neil, M. Aasa-chapman, P. Clapham, R. Nibbs, A. Mcknight et al., The Promiscuous CC Chemokine Receptor D6 Is a Functional Coreceptor for Primary Isolates of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 on Astrocytes, Journal of Virology, vol.79, issue.15, pp.9618-9642, 2005.
DOI : 10.1128/JVI.79.15.9618-9624.2005

E. Segura and S. Amigorena, Cross-presentation by human dendritic cell subsets, Immunology Letters, vol.158, issue.1-2, pp.73-81, 2013.
DOI : 10.1016/j.imlet.2013.12.001

D. Gao, J. Wu, Y. Wu, F. Du, C. Aroh et al., Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses, Science, vol.341, issue.6148, pp.903-909, 2013.
DOI : 10.1126/science.1240933

N. Calantone, F. Wu, Z. Klase, C. Deleage, M. Perkins et al., Tissue Myeloid Cells in SIV-Infected Primates Acquire Viral DNA through Phagocytosis of Infected T Cells, Immunity, vol.41, issue.3, pp.493-502, 2014.
DOI : 10.1016/j.immuni.2014.08.014

B. Roquebert, F. Damond, C. G. Matheron, S. Peytavin, G. Benard et al., HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro, Journal of Antimicrobial Chemotherapy, vol.62, issue.5
DOI : 10.1093/jac/dkn335

F. Clavel, D. Guetard, F. Brun-vezinet, S. Chamaret, M. Rey et al., Isolation of a new human retrovirus from West African patients with AIDS, Science, vol.233, issue.4761, pp.343-349, 1986.
DOI : 10.1126/science.2425430

B. Visseaux, M. Hurtado-nedelec, C. Charpentier, C. G. Storto, A. Matheron et al., Molecular Determinants of HIV-2 R5-X4 Tropism in the V3 Loop: Development of a New Genotypic Tool, Journal of Infectious Diseases, vol.205, issue.1, pp.111-131, 2012.
DOI : 10.1093/infdis/jir698

C. Goujon, L. Jarrosson-wuilleme, J. Bernaud, D. Rigal, J. Darlix et al., With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC, Gene Therapy, vol.77, issue.12, pp.991-995, 2006.
DOI : 10.1038/sj.gt.3302753

A. Lepelley, S. Louis, M. Sourisseau, H. Law, J. Pothlichet et al., Innate Sensing of HIV-Infected Cells, PLoS Pathogens, vol.178, issue.2, p.1001284, 2011.
DOI : 10.1371/journal.ppat.1001284.s002

URL : https://hal.archives-ouvertes.fr/pasteur-00590930

V. Avettand-fenoel, F. Damond, M. Gueudin, S. Matheron, A. Mélard et al., New Sensitive One-Step Real-Time Duplex PCR Method for Group A and B HIV-2 RNA Load, Journal of Clinical Microbiology, vol.52, issue.8, pp.3017-3039, 2014.
DOI : 10.1128/JCM.00724-14