F. Burt, M. Rolph, N. Rulli, S. Mahalingam, and M. Heise, Chikungunya: a re-emerging virus, The Lancet, vol.379, issue.9816, pp.662-671, 2012.
DOI : 10.1016/S0140-6736(11)60281-X

I. Schuffenecker, I. Iteman, A. Michault, S. Murri, and L. Frangeul, Genome Microevolution of Chikungunya Viruses Causing the Indian Ocean Outbreak, PLoS Medicine, vol.105, issue.7, p.263, 2006.
DOI : 10.1371/journal.pmed.0030263.st005

K. Tsetsarkin, S. Higgs, C. Mcgee, D. Lamballerie, X. Charrel et al., Infectious Clones of Chikungunya Virus (La R??union Isolate) for Vector Competence Studies, Vector-Borne and Zoonotic Diseases, vol.6, issue.4, pp.325-337, 2006.
DOI : 10.1089/vbz.2006.6.325

X. De-lamballerie, E. Leroy, R. Charrel, K. Ttsetsarkin, and S. Higgs, Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?, Virology Journal, vol.5, issue.1, p.33, 2008.
DOI : 10.1186/1743-422X-5-33

K. Tsetsarkin and S. Weaver, Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence, PLoS Pathogens, vol.344, issue.7877, p.1002412, 2011.
DOI : 10.1371/journal.ppat.1002412.s006

J. Medlock, K. Hansford, F. Schaffner, V. Versteirt, and G. Hendrickx, A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options, Vector-Borne and Zoonotic Diseases, vol.12, issue.6, pp.435-447, 2012.
DOI : 10.1089/vbz.2011.0814

A. Vega-rua, K. Zouache, V. Caro, L. Diancourt, and P. Delaunay, High Efficiency of Temperate Aedes albopictus to Transmit Chikungunya and Dengue Viruses in the Southeast of France, PLoS ONE, vol.44, issue.3, p.59716, 2013.
DOI : 10.1371/journal.pone.0059716.s001

O. Schwartz and M. Albert, Biology and pathogenesis of chikungunya virus, Nature Reviews Microbiology, vol.81, issue.7, pp.491-500, 2010.
DOI : 10.1038/nrmicro2368

URL : https://hal.archives-ouvertes.fr/pasteur-00498486

L. Dupuis-maguiraga, M. Noret, S. Brun, L. Grand, R. Gras et al., Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia, PLoS Neglected Tropical Diseases, vol.38, issue.39, p.1446, 2012.
DOI : 10.1371/journal.pntd.0001446.t003

A. Suhrbier, M. Jaffar-bandjee, and P. Gasque, Arthritogenic alphaviruses???an overview, Nature Reviews Rheumatology, vol.28, issue.7, pp.420-429, 2012.
DOI : 10.1038/nrrheum.2012.64

URL : https://hal.archives-ouvertes.fr/hal-01274606

F. Lum, T. Teo, W. Lee, Y. Kam, and L. Renia, An Essential Role of Antibodies in the Control of Chikungunya Virus Infection, The Journal of Immunology, vol.190, issue.12, pp.6295-6302, 2013.
DOI : 10.4049/jimmunol.1300304

S. Ozden, M. Huerre, J. Riviere, L. Coffey, and P. Afonso, Human Muscle Satellite Cells as Targets of Chikungunya Virus Infection, PLoS ONE, vol.65, issue.Pt 3, p.527, 2007.
DOI : 10.1371/journal.pone.0000527.g004

URL : https://hal.archives-ouvertes.fr/pasteur-00292848

M. Sourisseau, C. Schilte, N. Casartelli, C. Trouillet, and F. Guivel-benhassine, Characterization of Reemerging Chikungunya Virus, PLoS Pathogens, vol.4, issue.6, p.89, 2007.
DOI : 0889-2229(1988)004[0441:ARASTF]2.0.CO;2

URL : https://hal.archives-ouvertes.fr/pasteur-00161827

P. Gerardin, G. Barau, A. Michault, M. Bintner, and H. Randrianaivo, Multidisciplinary Prospective Study of Mother-to-Child Chikungunya Virus Infections on the Island of La R??union, PLoS Medicine, vol.370, issue.3, p.60, 2008.
DOI : 10.1371/journal.pmed.0050060.sd001

A. Economopoulou, M. Dominguez, B. Helynck, D. Sissoko, and O. Wichmann, Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005???2006 outbreak on R??union, Epidemiology and Infection, vol.38, issue.04, pp.534-541, 2005.
DOI : 10.1086/518701

C. Arpino, P. Curatolo, and G. Rezza, Chikungunya and the nervous system: what we do and do not know, Reviews in Medical Virology, vol.40, issue.2, pp.121-129, 2009.
DOI : 10.1002/rmv.606

T. Das, M. Jaffar-bandjee, J. Hoarau, K. Trotot, P. Denizot et al., Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus, Progress in Neurobiology, vol.91, issue.2, pp.121-129, 2010.
DOI : 10.1016/j.pneurobio.2009.12.006

URL : https://hal.archives-ouvertes.fr/hal-01274626

T. Couderc, F. Chretien, C. Schilte, O. Disson, and M. Brigitte, A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease, PLoS Pathogens, vol.41, issue.2, p.29, 2008.
DOI : 10.1371/journal.ppat.0040029.sg003

URL : https://hal.archives-ouvertes.fr/pasteur-01402310

K. Labadie, T. Larcher, C. Joubert, A. Mannioui, and B. Delache, Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages, Journal of Clinical Investigation, vol.120, issue.3, pp.894-906, 2010.
DOI : 10.1172/JCI40104DS1

C. Schilte, T. Couderc, F. Chretien, M. Sourisseau, and N. Gangneux, Type I IFN controls chikungunya virus via its action on nonhematopoietic cells, The Journal of Experimental Medicine, vol.58, issue.2, pp.429-442, 2010.
DOI : 10.1038/77553

URL : https://hal.archives-ouvertes.fr/pasteur-00458108

J. Gardner, I. Anraku, T. Le, T. Larcher, and L. Major, Chikungunya Virus Arthritis in Adult Wild-Type Mice, Journal of Virology, vol.84, issue.16, pp.8021-8032
DOI : 10.1128/JVI.02603-09

D. Tobin, R. May, and R. Wheeler, Zebrafish: A See-Through Host and a Fluorescent Toolbox to Probe Host???Pathogen Interaction, PLoS Pathogens, vol.10, issue.1, p.1002349, 2012.
DOI : 10.1371/journal.ppat.1002349.t001

G. Lieschke, A. Oates, M. Crowhurst, A. Ward, and J. Layton, Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish, Blood, vol.98, issue.10, pp.3087-3096, 2001.
DOI : 10.1182/blood.V98.10.3087

L. Guyader, D. Redd, M. Colucci-guyon, E. Murayama, E. Kissa et al., Origins and unconventional behavior of neutrophils in developing zebrafish, Blood, vol.111, issue.1, pp.132-141, 2008.
DOI : 10.1182/blood-2007-06-095398

J. Zou, C. Tafalla, J. Truckle, and C. Secombes, Identification of a Second Group of Type I IFNs in Fish Sheds Light on IFN Evolution in Vertebrates, The Journal of Immunology, vol.179, issue.6, pp.3859-3871, 2007.
DOI : 10.4049/jimmunol.179.6.3859

D. Aggad, M. Mazel, P. Boudinot, K. Mogensen, and O. Hamming, The Two Groups of Zebrafish Virus-Induced Interferons Signal via Distinct Receptors with Specific and Shared Chains, The Journal of Immunology, vol.183, issue.6, pp.3924-3931, 2009.
DOI : 10.4049/jimmunol.0901495

O. Hamming, G. Lutfalla, J. Levraud, and R. Hartmann, Crystal Structure of Zebrafish Interferons I and II Reveals Conservation of Type I Interferon Structure in Vertebrates, Journal of Virology, vol.85, issue.16, pp.8181-8187, 2011.
DOI : 10.1128/JVI.00521-11

J. Levraud, P. Boudinot, C. I. Benmansour, A. Peyrieras, and N. , Identification of the Zebrafish IFN Receptor: Implications for the Origin of the Vertebrate IFN System, The Journal of Immunology, vol.178, issue.7, pp.4385-4394, 2007.
DOI : 10.4049/jimmunol.178.7.4385

URL : https://hal.archives-ouvertes.fr/hal-00150512

J. Weston, S. Villoing, M. Bremont, J. Castric, and M. Pfeffer, Comparison of Two Aquatic Alphaviruses, Salmon Pancreas Disease Virus and Sleeping Disease Virus, by Using Genome Sequence Analysis, Monoclonal Reactivity, and Cross-Infection, Journal of Virology, vol.76, issue.12, pp.6155-6163, 2002.
DOI : 10.1128/JVI.76.12.6155-6163.2002

N. Forrester, G. Palacios, R. Tesh, N. Savji, and H. Guzman, Genome-Scale Phylogeny of the Alphavirus Genus Suggests a Marine Origin, Journal of Virology, vol.86, issue.5, pp.2729-2738, 2012.
DOI : 10.1128/JVI.05591-11

R. Durbin, A. Kane, and V. Stollar, A mutant of sindbis virus with altered plaque morphology and a decreased ratio of 26 S:49 S RNA synthesis in mosquito cells, Virology, vol.183, issue.1, pp.306-312, 1991.
DOI : 10.1016/0042-6822(91)90143-Y

P. Phelan, M. Pressley, P. Witten, M. Mellon, and S. Blake, Characterization of Snakehead Rhabdovirus Infection in Zebrafish (Danio rerio), Journal of Virology, vol.79, issue.3, 2005.
DOI : 10.1128/JVI.79.3.1842-1852.2005

A. Lopez-munoz, F. Roca, M. Sepulcre, J. Meseguer, and V. Mulero, Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus, Developmental & Comparative Immunology, vol.34, issue.5, pp.546-552, 2010.
DOI : 10.1016/j.dci.2009.12.015

M. Ludwig, N. Palha, C. Torhy, V. Briolat, and E. Colucci-guyon, Whole-Body Analysis of a Viral Infection: Vascular Endothelium is a Primary Target of Infectious Hematopoietic Necrosis Virus in Zebrafish Larvae, PLoS Pathogens, vol.76, issue.2, p.1001269, 2011.
DOI : 10.1371/journal.ppat.1001269.s001

P. Rudd, J. Wilson, J. Gardner, T. Larcher, and C. Babarit, Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock, Journal of Virology, vol.86, issue.18, pp.9888-9898, 2012.
DOI : 10.1128/JVI.00956-12

URL : https://hal.archives-ouvertes.fr/hal-01191139

C. Schilte, M. Buckwalter, M. Laird, M. Diamond, and O. Schwartz, Cutting Edge: Independent Roles for IRF-3 and IRF-7 in Hematopoietic and Nonhematopoietic Cells during Host Response to Chikungunya Infection, The Journal of Immunology, vol.188, issue.7, pp.2967-2971, 2012.
DOI : 10.4049/jimmunol.1103185

URL : https://hal.archives-ouvertes.fr/pasteur-01372485

M. Brannon, J. Davis, J. Mathias, C. Hall, and J. Emerson, Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos, Cellular Microbiology, vol.74, issue.5, pp.755-768, 2009.
DOI : 10.1111/j.1462-5822.2009.01288.x

J. Davison, C. Akitake, M. Goll, J. Rhee, and N. Gosse, Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish, Developmental Biology, vol.304, issue.2, pp.811-824, 2007.
DOI : 10.1016/j.ydbio.2007.01.033

C. Liongue, C. Hall, O. Connell, B. Crosier, P. Ward et al., Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration, Blood, vol.113, issue.11, pp.2535-2546, 2009.
DOI : 10.1182/blood-2008-07-171967

C. Hall, M. Flores, S. Oehlers, L. Sanderson, and E. Lam, Infection-Responsive Expansion of the Hematopoietic Stem and Progenitor Cell Compartment in Zebrafish Is Dependent upon Inducible Nitric Oxide, Cell Stem Cell, vol.10, issue.2, pp.198-209, 2012.
DOI : 10.1016/j.stem.2012.01.007

S. Curado, E. Ober, S. Walsh, P. Cortes-hernandez, and H. Verkade, The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model, Disease Models & Mechanisms, vol.3, issue.7-8, pp.486-495, 2010.
DOI : 10.1242/dmm.004390

S. Ziegler, L. Lu, A. Da-rosa, S. Xiao, and R. Tesh, An animal model for studying the pathogenesis of chikungunya virus infection, Am J Trop Med Hyg, vol.79, pp.133-139, 2008.

E. Wang, E. Volkova, A. Adams, N. Forrester, and S. Xiao, Chimeric alphavirus vaccine candidates for chikungunya, Vaccine, vol.26, issue.39, pp.5030-5039, 2008.
DOI : 10.1016/j.vaccine.2008.07.054

F. Sun, Y. Zhang, T. Liu, L. Gan, and F. Yu, Characterization of Fish IRF3 as an IFN-Inducible Protein Reveals Evolving Regulation of IFN Response in Vertebrates, The Journal of Immunology, vol.185, issue.12, pp.7573-7582, 2010.
DOI : 10.4049/jimmunol.1002401

R. Takauji, S. Iho, H. Takatsuka, S. Yamamoto, and T. Takahashi, CpG- DNA-induced IFN-alpha production involves p38 MAPK-dependent STAT1 phosphorylation in human plasmacytoid dendritic cell precursors, J Leukoc Biol, vol.72, pp.1011-1019, 2002.

J. Pulverer, R. U. Lienenklaus, S. Kugel, D. Zietara, and N. , Temporal and Spatial Resolution of Type I and III Interferon Responses In Vivo, Journal of Virology, vol.84, issue.17, pp.8626-8638, 2010.
DOI : 10.1128/JVI.00303-10

F. Hayashi, T. Means, and A. Luster, Toll-like receptors stimulate human neutrophil function, Blood, vol.102, issue.7, pp.2660-2669, 2003.
DOI : 10.1182/blood-2003-04-1078

N. Tamassia, L. Moigne, V. Rossato, M. Donini, M. Mccartney et al., Activation of an Immunoregulatory and Antiviral Gene Expression Program in Poly(I:C)-Transfected Human Neutrophils, The Journal of Immunology, vol.181, issue.9, pp.6563-6573, 2008.
DOI : 10.4049/jimmunol.181.9.6563

B. Drescher and F. Bai, Neutrophil in viral infections, friend or foe?, Virus Research, vol.171, issue.1, pp.1-7, 2013.
DOI : 10.1016/j.virusres.2012.11.002

C. Jenne, C. Wong, F. Zemp, B. Mcdonald, and M. Rahman, Neutrophils Recruited to Sites of Infection Protect from Virus Challenge by Releasing Neutrophil Extracellular Traps, Cell Host & Microbe, vol.13, issue.2, pp.169-180, 2013.
DOI : 10.1016/j.chom.2013.01.005

T. Saitoh, J. Komano, Y. Saitoh, T. Misawa, and M. Takahama, Neutrophil Extracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1, Cell Host & Microbe, vol.12, issue.1, pp.109-116, 2012.
DOI : 10.1016/j.chom.2012.05.015

D. Palic, C. Andreasen, J. Ostojic, R. Tell, and J. Roth, Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules, Journal of Immunological Methods, vol.319, issue.1-2, pp.87-97, 2007.
DOI : 10.1016/j.jim.2006.11.003

E. Colucci-guyon, J. Tinevez, S. Renshaw, and P. Herbomel, Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes, Journal of Cell Science, vol.124, issue.18, pp.3053-3059, 2011.
DOI : 10.1242/jcs.082792

C. Yang, C. Cambier, J. Davis, C. Hall, and P. Crosier, Neutrophils Exert Protection in the Early Tuberculous Granuloma by Oxidative Killing of Mycobacteria Phagocytosed from Infected Macrophages, Cell Host & Microbe, vol.12, issue.3, pp.301-312, 2012.
DOI : 10.1016/j.chom.2012.07.009

A. Navarini, M. Recher, K. Lang, P. Georgiev, and S. Meury, Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses, Proceedings of the National Academy of Sciences, vol.103, issue.42, pp.15535-15539, 2006.
DOI : 10.1073/pnas.0607325103

A. Ronneseth, E. Pettersen, and H. Wergeland, Neutrophils and B-cells in blood and head kidney of Atlantic salmon (Salmo salar L.) challenged with infectious pancreatic necrosis virus (IPNV), Fish & Shellfish Immunology, vol.20, issue.4, pp.610-620, 2006.
DOI : 10.1016/j.fsi.2005.08.004

A. Chow, Z. Her, E. Ong, J. Chen, and F. Dimatatac, Persistent Arthralgia Induced by Chikungunya Virus Infection is Associated with Interleukin-6 and Granulocyte Macrophage Colony-Stimulating Factor, Journal of Infectious Diseases, vol.203, issue.2, pp.149-157, 2011.
DOI : 10.1093/infdis/jiq042

S. Cuzzocrea, P. Chatterjee, E. Mazzon, L. Dugo, D. Sarro et al., Role of Induced Nitric Oxide in the Initiation of the Inflammatory Response After Postischemic Injury, Shock, vol.18, issue.2, pp.169-176, 2002.
DOI : 10.1097/00024382-200208000-00014

T. Genovese, S. Cuzzocrea, D. Paola, R. Failla, M. Mazzon et al., Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury, Respiratory Research, vol.391, issue.6, p.58, 2005.
DOI : 10.1038/34923

P. Zeidler, L. Millecchia, and V. Castranova, Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-??-induced pulmonary inflammation, Toxicology and Applied Pharmacology, vol.195, issue.1, pp.45-54, 2004.
DOI : 10.1016/j.taap.2003.10.005

A. Orvedahl, S. Macpherson, R. Sumpter, J. Talloczy, Z. Zou et al., Autophagy Protects against Sindbis Virus Infection of the Central Nervous System, Cell Host & Microbe, vol.7, issue.2, pp.115-127, 2010.
DOI : 10.1016/j.chom.2010.01.007

D. Stetson and R. Medzhitov, Type I Interferons in Host Defense, Immunity, vol.25, issue.3, pp.373-381, 2006.
DOI : 10.1016/j.immuni.2006.08.007

J. Jeong, H. Kwon, J. Ahn, D. Kang, and S. Kwon, Functional and developmental analysis of the blood???brain barrier in zebrafish, Brain Research Bulletin, vol.75, issue.5, pp.619-628, 2008.
DOI : 10.1016/j.brainresbull.2007.10.043

T. Murooka, M. Deruaz, F. Marangoni, V. Vrbanac, and E. Seung, HIV-infected T cells are migratory vehicles for viral dissemination, Nature, vol.757, issue.7419, pp.283-287, 2012.
DOI : 10.1038/nature11398

X. Sewald, D. Gonzalez, A. Haberman, and W. Mothes, In vivo imaging of virological synapses, Nature Communications, vol.63, p.1320, 2012.
DOI : 10.1038/ncomms2338

H. Hickman, G. Reynoso, B. Ngudiankama, E. Rubin, and J. Magadán, Anatomically Restricted Synergistic Antiviral Activities of Innate and Adaptive Immune Cells in the Skin, Cell Host & Microbe, vol.13, issue.2, pp.155-168, 2013.
DOI : 10.1016/j.chom.2013.01.004

M. Westerfield, The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio) Corvallis: University of, 2000.

J. Levraud, E. Colucci-guyon, M. Redd, G. Lutfalla, and P. Herbomel, In Vivo Analysis of Zebrafish Innate Immunity, Methods Mol Biol, vol.415, pp.337-363, 2008.
DOI : 10.1007/978-1-59745-570-1_20

URL : https://hal.archives-ouvertes.fr/hal-00275408

D. Traver, B. Paw, K. Poss, W. Penberthy, and S. Lin, Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants, Nature Immunology, vol.4, issue.12, pp.1238-1246, 2003.
DOI : 10.1038/ni1007

H. Park, C. Kim, Y. Bae, S. Yeo, and S. Kim, Analysis of Upstream Elements in the HuC Promoter Leads to the Establishment of Transgenic Zebrafish with Fluorescent Neurons, Developmental Biology, vol.227, issue.2, pp.279-293, 2000.
DOI : 10.1006/dbio.2000.9898

R. Bernardos and P. Raymond, GFAP transgenic zebrafish, Gene Expression Patterns, vol.6, issue.8, pp.1007-1013, 2006.
DOI : 10.1016/j.modgep.2006.04.006

P. Dong, C. Munson, W. Norton, C. Crosnier, and X. Pan, Fgf10 regulates hepatopancreatic ductal system patterning and differentiation, Nature Genetics, vol.11, issue.3, pp.397-402, 2007.
DOI : 10.1002/(SICI)1520-6408(1998)22:3<288::AID-DVG10>3.3.CO;2-T

S. Renshaw, C. Loynes, D. Trushell, S. Elworthy, and P. Ingham, A transgenic zebrafish model of neutrophilic inflammation, Blood, vol.108, issue.13, pp.3976-3978, 2006.
DOI : 10.1182/blood-2006-05-024075

F. Ellett, L. Pase, J. Hayman, A. Andrianopoulos, and G. Lieschke, mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, issue.4, pp.49-56
DOI : 10.1182/blood-2010-10-314120

M. Suster, H. Kikuta, A. Urasaki, K. Asakawa, and K. Kawakami, Transgenesis in Zebrafish with the Tol2 Transposon System, Methods Mol Biol, vol.561, pp.41-63, 2009.
DOI : 10.1007/978-1-60327-019-9_3

F. Ellett and G. Lieschke, Computational Quantification of Fluorescent Leukocyte Numbers in Zebrafish Embryos, Methods Enzymol, vol.506, pp.425-435, 2012.
DOI : 10.1016/B978-0-12-391856-7.00046-9

K. Svoboda, A. Linares, and A. Ribera, Activity regulates programmed cell death of zebrafish Rohon-Beard neurons, Development, vol.128, pp.3511-3520, 2001.

I. Greiser-wilke, V. Moenning, O. Kaaden, and L. Figueiredo, Most Alphaviruses Share a Conserved Epitopic Region on Their Nucleocapsid Protein, Journal of General Virology, vol.70, issue.3, pp.743-748, 1989.
DOI : 10.1099/0022-1317-70-3-743

L. Covassin, J. Amigo, K. Suzuki, V. Teplyuk, and J. Straubhaar, Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish, Developmental Biology, vol.299, issue.2, pp.551-562, 2006.
DOI : 10.1016/j.ydbio.2006.08.020

C. Thisse and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature Protocols, vol.75, issue.1, pp.59-69, 2008.
DOI : 10.1038/nprot.2007.514