D. Ladant and A. Ullmann, Bordetella pertussis adenylate cyclase: a toxin with multiple talents, Trends in Microbiology, vol.7, issue.4, pp.172-176, 1999.
DOI : 10.1016/S0966-842X(99)01468-7

J. Vojtova, J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense, Current Opinion in Microbiology, vol.9, issue.1, pp.69-75, 2006.
DOI : 10.1016/j.mib.2005.12.011

N. Carbonetti, and cell biology tools, Future Microbiology, vol.5, issue.3, pp.455-469, 2010.
DOI : 10.2217/fmb.09.133

J. Wolff, G. Cook, A. Goldhammer, and S. Berkowitz, Calmodulin activates prokaryotic adenylate cyclase., Proceedings of the National Academy of Sciences, vol.77, issue.7, pp.3841-3844, 1980.
DOI : 10.1073/pnas.77.7.3841

D. Confer and J. Eaton, Phagocyte impotence caused by an invasive bacterial adenylate cyclase, Science, vol.217, issue.4563, pp.948-950, 1982.
DOI : 10.1126/science.6287574

A. Rogel, J. Schultz, R. Brownlie, J. Coote, R. Parton et al., Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme, EMBO J, vol.8, pp.2755-2760, 1989.

M. Goodwin and A. Weiss, Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice, Infect Immun, vol.58, pp.3445-3447, 1990.

N. Khelef, A. Zychlinsky, and N. Guiso, Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin, Infect Immun, vol.61, pp.4064-4071, 1993.

E. Harvill, P. Cotter, M. Yuk, and J. Miller, Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity, Infect Immun, vol.67, pp.1493-1500, 1999.

E. Hewlett, G. Donato, and M. Gray, Macrophage cytotoxicity produced by adenylate cyclase toxin from Bordetella pertussis: more than just making cyclic AMP! Mol Mic 59, pp.447-459, 2006.
DOI : 10.1111/j.1365-2958.2005.04958.x

G. Cheung, P. Dickinson, G. Sing, M. Craigon, P. Ghazal et al., Transcriptional responses of murine macrophages to the adenylate cyclase toxin of Bordetella pertussis, Microbial Pathogenesis, vol.44, issue.1, pp.61-70, 2008.
DOI : 10.1016/j.micpath.2007.08.007

J. Kamanova, O. Kofronova, J. Masin, H. Genth, J. Vojtova et al., Adenylate Cyclase Toxin Subverts Phagocyte Function by RhoA Inhibition and Unproductive Ruffling, The Journal of Immunology, vol.181, issue.8, pp.5587-5597, 2008.
DOI : 10.4049/jimmunol.181.8.5587

Q. Guo, Y. Shen, Y. Lee, C. Gibbs, M. Mrksich et al., Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin, The EMBO Journal, vol.14, issue.18, pp.3190-3201, 2005.
DOI : 10.1016/S0022-2836(03)00271-7

Y. Shen, Y. Lee, S. Soelaiman, P. Bergson, D. Lu et al., Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins, The EMBO Journal, vol.21, issue.24, pp.6721-6732, 2002.
DOI : 10.1093/emboj/cdf681

E. Selwa, E. Laine, and T. Malliavin, Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis, Proteins: Structure, Function, and Bioinformatics, vol.38, issue.5.6, pp.1028-1040, 2012.
DOI : 10.1002/prot.24005

K. Hamacher, J. Trylska, and J. And-mccammon, Dependency Map of Proteins in the Small Ribosomal Subunit, PLoS Computational Biology, vol.20, issue.2, p.10, 2006.
DOI : 10.1371/journal.pcbi.0020010.sd001

E. Laine, A. Blondel, and T. Malliavin, Dynamics and Energetics: A Consensus Analysis of the Impact of Calcium on EF-CaM Protein Complex, Biophysical Journal, vol.96, issue.4, pp.1-15, 2009.
DOI : 10.1016/j.bpj.2008.10.055

D. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.124, issue.16, pp.1668-1688, 2005.
DOI : 10.1002/jcc.20290

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Structure, Function, and Bioinformatics, vol.43, issue.3, pp.712-725, 2006.
DOI : 10.1002/prot.21123

W. Jorgensen, Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, Journal of the American Chemical Society, vol.103, issue.2, pp.335-340, 1981.
DOI : 10.1021/ja00392a016

J. Aqvist, Ion-water interaction potentials derived from free energy perturbation simulations, The Journal of Physical Chemistry, vol.94, issue.21, pp.8021-8024, 1990.
DOI : 10.1021/j100384a009

R. Grunberg, M. Nilges, and J. Leckner, Biskit A software platform for structural bioinformatics, Bioinformatics, vol.23, issue.6, pp.769-770, 2007.
DOI : 10.1093/bioinformatics/btl655

F. Chiappori, I. Merelli, G. Colombo, L. Milanesi, and G. Morra, Molecular Mechanism of Allosteric Communication in Hsp70 Revealed by Molecular Dynamics Simulations, PLoS Computational Biology, vol.95, issue.12, p.1002844, 2012.
DOI : 10.1371/journal.pcbi.1002844.s012

S. Vougier, J. Mary, N. Dautin, J. Vinh, B. Friguet et al., Essential Role of Methionine Residues in Calmodulin Binding to Bordetella pertussis Adenylate Cyclase, as Probed by Selective Oxidation and Repair by the Peptide Methionine Sulfoxide Reductases, Journal of Biological Chemistry, vol.279, issue.29, pp.30210-30218, 2004.
DOI : 10.1074/jbc.M400604200

S. Gmira, G. Karimova, and D. Ladant, Characterization of recombinant Bordetella pertussis adenylate cyclase toxins carrying passenger proteins, Research in Microbiology, vol.152, issue.10, pp.889-900, 2001.
DOI : 10.1016/S0923-2508(01)01272-4

G. Karimova, A. Ullmann, and D. Ladant, Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system, Journal of molecular microbiology and biotechnology, vol.3, pp.73-82, 2001.

E. Laine, C. Goncalves, J. Karst, A. Lesnard, S. Rault et al., Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11277-11282, 2010.
DOI : 10.1073/pnas.0914611107

J. Karst, A. Sotomayor-pérez, J. Guijarro, B. Raynal, A. Chenal et al., Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

A. Sotomayor-pérez, O. Subrini, A. Hessel, D. Ladant, and A. Chenal, Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX) Protein, Journal of the American Chemical Society, vol.135, issue.32, pp.11929-11934, 2013.
DOI : 10.1021/ja404790f

A. Chenal, J. Karst, A. Sotomayor-pérez, A. Wozniak, B. Baron et al., Calcium-Induced Folding and Stabilization of the Intrinsically Disordered RTX Domain of the CyaA Toxin, Biophysical Journal, vol.99, issue.11, pp.3744-3753, 2010.
DOI : 10.1016/j.bpj.2010.10.016

Y. Zhang, H. Tan, Y. Lu, Z. Jia, and G. Cheng, dissociation from the C-terminal EF-hand pair in calmodulin: A steered molecular dynamics study, FEBS Letters, vol.14, issue.9, pp.1355-1361, 2008.
DOI : 10.1016/j.febslet.2008.03.010

M. Zhang, T. Tanaka, and M. Ikura, Calcium-induced conformational transition revealed by the solution structure of apo calmodulin, Nature Structural Biology, vol.20, issue.9, pp.758-767, 1995.
DOI : 10.1016/S0076-6879(94)39014-2

B. Finn, J. Evenas, T. Drakenberg, J. Waltho, E. Thulin et al., Calcium-induced structural changes and domain autonomy in calmodulin, Nature Structural Biology, vol.17, issue.9, pp.777-783, 1995.
DOI : 10.1016/0263-7855(88)80054-7

P. Glaser, A. Elmaoglou-lazaridou, E. Krin, D. Ladant, O. Bárzu et al., Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis, EMBO J, vol.8, pp.967-972, 1989.

P. Weinkam, J. Pons, and A. Sali, Structure-based model of allostery predicts coupling between distant sites, Proceedings of the National Academy of Sciences, vol.109, issue.13, pp.4875-4880, 2012.
DOI : 10.1073/pnas.1116274109

P. Weinkam, Y. Chen, J. Pons, and A. Sali, Impact of Mutations on the Allosteric Conformational Equilibrium, Journal of Molecular Biology, vol.425, issue.3, pp.647-661, 2013.
DOI : 10.1016/j.jmb.2012.11.041

C. Chennubhotla and I. Bahar, Signal propagation in proteins and relation to equilibrium fluctuations, PLoS Comput Biol, vol.3, pp.1716-1726, 2007.

A. Del-sol, C. Tsai, B. Ma, and R. Nussinov, The Origin of Allosteric Functional Modulation: Multiple Pre-existing Pathways, Structure, vol.17, issue.8, pp.1042-1050, 2009.
DOI : 10.1016/j.str.2009.06.008

K. Dubay, J. Bothma, and P. Geissler, Long-Range Intra-Protein Communication Can Be Transmitted by Correlated Side-Chain Fluctuations Alone, PLoS Computational Biology, vol.86, issue.9, p.1002168, 2011.
DOI : 10.1371/journal.pcbi.1002168.g007

G. Kuzu, O. Keskin, A. Gursoy, and R. Nussinov, Constructing structural networks of signaling pathways on the proteome scale, Current Opinion in Structural Biology, vol.22, issue.3, pp.367-377, 2012.
DOI : 10.1016/j.sbi.2012.04.004

E. Cilia, G. Vuister, and T. Lenaerts, Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e, PLoS Computational Biology, vol.27, issue.11, p.1002794, 2012.
DOI : 10.1371/journal.pcbi.1002794.s001

A. Bakan and I. Bahar, The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding, Proceedings of the National Academy of Sciences, vol.106, issue.34, pp.14349-14354, 2009.
DOI : 10.1073/pnas.0904214106

R. Nussinov, B. Ma, C. Tsai, C. , and P. , Allosteric Conformational Barcodes Direct Signaling in the Cell, Structure, vol.21, issue.9, pp.1509-1521, 2013.
DOI : 10.1016/j.str.2013.06.002

S. Lockless and R. Ranganathan, Evolutionarily Conserved Pathways of Energetic Connectivity in Protein Families, Science, vol.286, issue.5438, pp.295-299, 1999.
DOI : 10.1126/science.286.5438.295

R. Dickson, L. Wahl, A. Fernandes, and G. Gloor, Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation, PLoS ONE, vol.61, issue.6, p.11082, 2010.
DOI : 10.1371/journal.pone.0011082.s007

URL : http://doi.org/10.1371/journal.pone.0011082

K. Reynolds, R. Mclaughlin, and R. And-ranganathan, Hot Spots for Allosteric Regulation on Protein Surfaces, Cell, vol.147, issue.7, pp.1564-1575, 2011.
DOI : 10.1016/j.cell.2011.10.049

R. Selvaratnam, S. Chowdhury, B. Vanschouwen, and G. Melacini, Mapping allostery through the covariance analysis of NMR chemical shifts, Proceedings of the National Academy of Sciences, vol.108, issue.15, pp.6133-6138, 2011.
DOI : 10.1073/pnas.1017311108

J. Lee, M. Natarajan, V. Nashine, M. Socolich, T. Vo et al., Surface Sites for Engineering Allosteric Control in Proteins, Science, vol.322, issue.5900, pp.438-442, 2008.
DOI : 10.1126/science.1159052

R. Seifert and S. Dove, Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis, Trends in Microbiology, vol.20, issue.7, pp.343-351, 2012.
DOI : 10.1016/j.tim.2012.04.002

N. Eswar, D. Eramian, B. Webb, M. Shen, and A. Sali, Protein Structure Modeling with MODELLER, Methods Mol Biol, vol.426, pp.145-159, 2008.
DOI : 10.1007/978-1-60327-058-8_8