C. Walker, Whooping cough case numbers rise across the UK and US, Nursing Children and Young People, vol.24, issue.7, p.4, 2012.
DOI : 10.7748/ncyp.24.7.4.s2

J. Murphy, Pertussis has re-emerged, Ir Med J, vol.105, p.260, 2012.

R. Seifert and S. Dove, Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis, Trends in Microbiology, vol.20, issue.7, pp.343-351, 2012.
DOI : 10.1016/j.tim.2012.04.002

E. Laine, C. Goncalves, J. Karst, A. Lesnard, S. Rault et al., Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11277-11282, 2010.
DOI : 10.1073/pnas.0914611107

Q. Guo, Y. Shen, Y. Lee, C. Gibbs, M. Mrksich et al., Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin, The EMBO Journal, vol.14, issue.18
DOI : 10.1016/S0022-2836(03)00271-7

J. Karst, A. Pérez, . Sotomayor, J. Guijarro, B. Raynal et al., Adenylate Cyclase Toxin, Biochemistry, vol.49, issue.2, pp.318-328, 2010.
DOI : 10.1021/bi9016389

URL : https://hal.archives-ouvertes.fr/hal-00512114

J. Gallay, M. Vincent, I. De-la-sierra, . Li, H. Munier-lehmann et al., Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy, European Journal of Biochemistry, vol.10, issue.Suppl., pp.821-833, 2004.
DOI : 10.1111/j.1432-1033.2004.03987.x

URL : https://hal.archives-ouvertes.fr/pasteur-00166965

E. Selwa, E. Laine, and T. Malliavin, Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis, Proteins: Structure, Function, and Bioinformatics, vol.38, issue.5.6, pp.1028-1040, 2012.
DOI : 10.1002/prot.24005

M. Whitley and A. Lee, Exploring the role of structure and dynamics in the function of chymotrypsin inhibitor 2, Proteins: Structure, Function, and Bioinformatics, vol.322, issue.3, pp.916-924, 2011.
DOI : 10.1002/prot.22930

K. Doring, T. Surrey, S. Grünewald, E. John, and F. Jähnig, Enhanced internal dynamics of a membrane transport protein during substrate translocation, Protein Science, vol.270, issue.11, pp.2246-2250, 2000.
DOI : 10.1110/ps.9.11.2246

S. Sacquin-mora, O. Delalande, and M. Baaden, Functional Modes and Residue Flexibility Control the Anisotropic Response of Guanylate Kinase to Mechanical Stress, Biophysical Journal, vol.99, issue.10, pp.3412-3419, 2010.
DOI : 10.1016/j.bpj.2010.09.026

URL : https://hal.archives-ouvertes.fr/hal-00602505

M. Marlow, J. Dogan, K. Frederick, K. Valentine, and A. Wand, The role of conformational entropy in molecular recognition by calmodulin, Nature Chemical Biology, vol.50, issue.5, pp.352-358, 2010.
DOI : 10.1038/nchembio.347

M. Kokkinidis, N. Glykos, and V. Fadouloglou, Protein Flexibility and Enzymatic Catalysis, Adv Protein Chem Struct Biol, vol.87, pp.181-218, 2012.
DOI : 10.1016/B978-0-12-398312-1.00007-X

A. Ramanathan and P. Agarwal, Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis, PLoS Biology, vol.43, issue.1, p.1001193, 2011.
DOI : 10.1371/journal.pbio.1001193.s029

N. Boekelheide, R. Salomón-ferrer, and T. Miller, Dynamics and dissipation in enzyme catalysis, Proceedings of the National Academy of Sciences, vol.108, issue.39, pp.16159-16163, 2011.
DOI : 10.1073/pnas.1106397108

G. Bhabha, J. Lee, D. Ekiert, J. Gam, I. Wilson et al., A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis, Science, vol.332, issue.6026, pp.234-238, 2011.
DOI : 10.1126/science.1198542

J. Klepeis, K. Lindorff-larsen, R. Dror, and D. Shaw, Long-timescale molecular dynamics simulations of protein structure and function, Current Opinion in Structural Biology, vol.19, issue.2, pp.120-127, 2009.
DOI : 10.1016/j.sbi.2009.03.004

P. Bolhuis, D. Chandler, C. Dellago, and P. Geissler, : Throwing Ropes Over Rough Mountain Passes, in the Dark, Annual Review of Physical Chemistry, vol.53, issue.1, pp.291-318, 2002.
DOI : 10.1146/annurev.physchem.53.082301.113146

R. Elber and M. Karplus, A method for determining reaction paths in large molecules: Application to myoglobin, Chemical Physics Letters, vol.139, issue.5, pp.375-380, 1987.
DOI : 10.1016/0009-2614(87)80576-6

G. Mills and H. Jönsson, dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, Physical Review Letters, vol.72, issue.7, pp.1124-1127, 1994.
DOI : 10.1103/PhysRevLett.72.1124

L. Maragliano, A. Fischer, E. Vanden-eijnden, and G. Ciccotti, String method in collective variables: Minimum free energy paths and isocommittor surfaces, The Journal of Chemical Physics, vol.125, issue.2, p.24106, 2006.
DOI : 10.1063/1.2212942

E. Vanden-eijnden and M. Venturoli, Markovian milestoning with Voronoi tessellations, The Journal of Chemical Physics, vol.130, issue.19, 2009.
DOI : 10.1063/1.3129843

S. Fischer and M. Karplus, Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom, Chemical Physics Letters, vol.194, issue.3, pp.252-261, 1992.
DOI : 10.1016/0009-2614(92)85543-J

E. W. Vanden-eijnden and E. , Transition-Path Theory and Path-Finding Algorithms for the Study of Rare Events, Annu Rev Phys Chem, vol.61, pp.391-420, 2010.

T. Huber, A. Torda, and W. Van-gunsteren, Local elevation: A method for improving the searching properties of molecular dynamics simulation, Journal of Computer-Aided Molecular Design, vol.29, issue.6, pp.695-708, 1994.
DOI : 10.1007/BF00124016

H. Grubmuller, Predicting slow structural transitions in macromolecular systems: Conformational flooding, Physical Review E, vol.52, issue.3, pp.2893-2906, 1995.
DOI : 10.1103/PhysRevE.52.2893

A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12562-12566, 2002.
DOI : 10.1073/pnas.202427399

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130499

G. Tribello, M. Ceriotti, and M. Parrinello, A self-learning algorithm for biased molecular dynamics, Proceedings of the National Academy of Sciences, vol.107, issue.41, pp.17509-17514, 2010.
DOI : 10.1073/pnas.1011511107

D. Hamelberg, J. Mongan, and J. Mccammon, Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules, The Journal of Chemical Physics, vol.120, issue.24, pp.11919-11929, 2004.
DOI : 10.1063/1.1755656

D. Bucher, B. Grant, P. Markwick, and J. Mccammon, Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics, PLoS Computational Biology, vol.49, issue.3
DOI : 10.1371/journal.pcbi.1002034.t002

J. Schlitter, M. Engels, P. Kruger, E. Jacoby, and A. Wollmer, Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ??? R Transition in Insulin, Molecular Simulation, vol.264, issue.2-6, pp.291-308, 1993.
DOI : 10.1146/annurev.bb.17.060188.002315

M. Sotomayor and K. Schulten, Single-Molecule Experiments in Vitro and in Silico, Science, vol.316, issue.5828, pp.1144-1148, 2007.
DOI : 10.1126/science.1137591

L. Maragliano and E. Vanden-eijnden, A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations, Chemical Physics Letters, vol.426, issue.1-3
DOI : 10.1016/j.cplett.2006.05.062

A. Ferrenberg and R. Swendsen, New Monte Carlo technique for studying phase transitions, Physical Review Letters, vol.61, issue.23, pp.2635-2638, 1988.
DOI : 10.1103/PhysRevLett.61.2635

L. Maragliano and E. Vanden-eijnden, Single-sweep methods for free energy calculations, The Journal of Chemical Physics, vol.128, issue.18, p.184110, 2008.
DOI : 10.1063/1.2907241

L. Maragliano, G. Cottone, G. Ciccotti, and E. Vanden-eijnden, Mapping the Network of Pathways of CO Diffusion in Myoglobin, Journal of the American Chemical Society, vol.132, issue.3, pp.1010-1017, 2010.
DOI : 10.1021/ja905671x

M. Monteferrante, S. Bonella, S. Meloni, E. Eijnden, . Vanden et al., Calculations of free energy barriers for local mechanisms of hydrogen diffusion in alanates, Scientific Modeling and Simulation SMNS, vol.126, issue.1-3, p.187, 2008.
DOI : 10.1007/s10820-008-9097-x

F. Sterpone, S. Bonella, and S. Meloni, by Ab Initio Rare Event Simulations, The Journal of Physical Chemistry C, vol.116, issue.37, pp.19636-19643, 2012.
DOI : 10.1021/jp3019588

URL : https://hal.archives-ouvertes.fr/hal-01498114

M. Lapelosa and C. Abrams, A Computational Study of Water and CO Migration Sites and Channels Inside Myoglobin, Journal of Chemical Theory and Computation, vol.9, issue.2, pp.1265-1271, 2013.
DOI : 10.1021/ct300862j

G. Ciccotti and S. Meloni, Temperature accelerated Monte Carlo (TAMC): a method for sampling the free energy surface of non-analytical collective variables, Physical Chemistry Chemical Physics, vol.41, issue.13, pp.5952-5959, 2011.
DOI : 10.1039/c0cp01335h

C. Abrams and E. Vanden-eijnden, On-the-fly free energy parameterization via temperature accelerated molecular dynamics, Chemical Physics Letters, vol.547, pp.114-119, 2012.
DOI : 10.1016/j.cplett.2012.07.064

Y. Yamamori and A. Kitao, MuSTAR MD: Multi-scale sampling using temperature accelerated and replica exchange molecular dynamics, The Journal of Chemical Physics, vol.139, issue.14, pp.145105-145115, 2013.
DOI : 10.1063/1.4823743

J. Lucid, S. Meloni, D. Mackernan, E. Spohr, and G. Ciccotti, Probing the Structures of Hydrated Nafion in Different Morphologies Using Temperature-Accelerated Molecular Dynamics Simulations, The Journal of Physical Chemistry C, vol.117, issue.2, 2012.
DOI : 10.1021/jp309038n

C. Abrams and E. Vanden-eijnden, Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics, Proceedings of the National Academy of Sciences, vol.107, issue.11, pp.4961-4966, 2010.
DOI : 10.1073/pnas.0914540107

H. Vashisth, L. Maragliano, and C. Abrams, "DFG-flip" in the Insulin Receptor Kinase is Facilitated by a Helical Intermediate State of the Activation Loop, Biophysical Journal, vol.100, issue.3, pp.1979-1987, 2012.
DOI : 10.1016/j.bpj.2010.12.3112

H. Vashisth and C. Brooks, Conformational Sampling of Maltose-Transporter Components in Cartesian Collective Variables Is Governed by the Low-Frequency Normal Modes, The Journal of Physical Chemistry Letters, vol.3, issue.22, pp.3379-3384, 2012.
DOI : 10.1021/jz301650q

R. Nygaard, Y. Zou, R. Dror, T. Mildorf, D. Arlow et al., The Dynamic Process of ??2-Adrenergic Receptor Activation, Cell, vol.152, issue.3, pp.532-542, 2013.
DOI : 10.1016/j.cell.2013.01.008

H. Vashisth and C. Abrams, All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element, Proteins: Structure, Function, and Bioinformatics, vol.479, issue.suppl. 2, pp.1017-1030, 2013.
DOI : 10.1002/prot.24255

D. Scarpazza, D. Ierardi, A. Lerer, K. Mackenzie, A. Pan et al., Extending the Generality of Molecular Dynamics Simulations on a Special-Purpose Machine, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pp.933-945, 2013.
DOI : 10.1109/IPDPS.2013.93

H. Vashisth, A. Storaska, R. Neubig, and C. Brooks, Conformational Dynamics of a Regulator of G-Protein Signaling Protein Reveals a Mechanism of Allosteric Inhibition by a Small Molecule, ACS Chemical Biology, vol.8, issue.12, 2013.
DOI : 10.1021/cb400568g

N. Eswar, B. Webb, M. Marti-renom, M. Madhusudhan, D. Eramian et al., Comparative Protein Structure Modeling using Modeller, Current Protocols in Bioinformatics, vol.5, pp.5-6, 2006.

A. Mackerell, M. Feig, and C. Brooks, Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, Journal of Computational Chemistry, vol.44, issue.Pt 6 Pt 1, pp.1400-1415, 2004.
DOI : 10.1002/jcc.20065

J. Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J Phys Chem B, vol.102, pp.3586-3616, 1998.

W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, and M. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.
DOI : 10.1063/1.445869

J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1002/jcc.20289

T. Darden, D. York, and L. Pedersen, Particle Mesh Ewald and an N.log(N) method for Ewald sums in large systems, J Chem Phys, vol.98, pp.3684-90, 1993.

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, 2002.
DOI : 10.1063/1.4822570

G. Martyna, D. Tobias, and M. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics, vol.101, issue.5, pp.4177-4189, 1994.
DOI : 10.1063/1.467468

S. Feller, Y. Zhang, R. Pastor, and B. Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, The Journal of Chemical Physics, vol.103, issue.11, pp.4613-4622, 1995.
DOI : 10.1063/1.470648

J. P. Ryckaert, G. Ciccotti, and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-341, 1977.
DOI : 10.1016/0021-9991(77)90098-5

H. Andersen, Rattle: A ???velocity??? version of the shake algorithm for molecular dynamics calculations, Journal of Computational Physics, vol.52, issue.1, pp.24-34, 1983.
DOI : 10.1016/0021-9991(83)90014-1

E. Lyman and D. Zuckerman, Ensemble-Based Convergence Analysis of Biomolecular Trajectories, Biophysical Journal, vol.91, issue.1, pp.164-172, 2006.
DOI : 10.1529/biophysj.106.082941

D. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.124, issue.16, pp.1668-1688, 2005.
DOI : 10.1002/jcc.20290

T. Aleksiev, R. Potestio, F. Pontiggia, S. Cozzini, and C. Micheletti, PiSQRD: a web server for decomposing proteins into quasi-rigid dynamical domains, Bioinformatics, vol.25, issue.20, pp.2743-2744, 2009.
DOI : 10.1093/bioinformatics/btp512

R. Potestio, F. Pontiggia, and C. Micheletti, Coarse-Grained Description of Protein Internal Dynamics: An Optimal Strategy for Decomposing Proteins in Rigid Subunits, Biophysical Journal, vol.96, issue.12, pp.4993-5002, 2009.
DOI : 10.1016/j.bpj.2009.03.051

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Genetics, vol.206, issue.4, pp.566-579, 1995.
DOI : 10.1002/prot.340230412

B. Born, S. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin, Faraday Discuss., vol.14, pp.161-173, 2009.
DOI : 10.1039/B804734K

A. Patel, P. Varilly, S. Jamadagni, M. Hagan, D. Chandler et al., Sitting at the Edge: How Biomolecules use Hydrophobicity to Tune Their Interactions and Function, The Journal of Physical Chemistry B, vol.116, issue.8, pp.2498-2503, 2012.
DOI : 10.1021/jp2107523