Y. Moodley, Age of the Association between Helicobacter pylori and Man, PLoS Pathogens, vol.320, issue.5, p.1002693, 2012.
DOI : 10.1371/journal.ppat.1002693.s005

I. Comas, Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nature Genetics, vol.41, issue.10, pp.1176-1182, 2013.
DOI : 10.1016/j.meegid.2007.08.001

Y. Cui, Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis, Proceedings of the National Academy of Sciences, vol.110, issue.2, pp.577-582, 2013.
DOI : 10.1073/pnas.1205750110

V. Schuenemann, Genome-Wide Comparison of Medieval and Modern Mycobacterium leprae, Science, vol.341, issue.6142, pp.179-183, 2013.
DOI : 10.1126/science.1238286

M. He, Emergence and global spread of epidemic healthcare-associated Clostridium difficile, Nature Genetics, vol.377, issue.1, pp.109-113, 2013.
DOI : 10.1093/molbev/msi103

M. Holden, A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic, Genome Research, vol.23, issue.4, pp.653-664, 2013.
DOI : 10.1101/gr.147710.112

K. Holt, Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe, Nature Genetics, vol.28, issue.9, pp.1056-1059, 2012.
DOI : 10.1186/1471-2164-9-75

URL : https://hal.archives-ouvertes.fr/pasteur-01117702

M. Achtman, Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica, PLoS Pathogens, vol.59, issue.6, p.1002776, 2012.
DOI : 10.1371/journal.ppat.1002776.s017

URL : https://hal.archives-ouvertes.fr/pasteur-01117433

J. Crump, S. Luby, and E. Mintz, The global burden of typhoid fever, Bull World Health Organ, vol.82, issue.5, pp.346-353, 2004.

D. Smith, Gerhard's distinction between typhoid and typhus and its reception in America, Bull Hist Med, vol.54, issue.3, pp.1833-1860368, 1980.

L. Gwyn, On infection with a Para-Colon bacillus in a case with all the clinical features of typhoid fever, Johns Hopkins Hospital Bulletin, vol.9, issue.84, pp.54-56, 1898.

F. Bainbridge, The Milroy lectures on paratyphoid fever and meat poisoning, Lancet, vol.179, issue.4620, pp.705-709, 1912.

R. Ochiai, Paratyphi A Rates, Asia, Emerging Infectious Diseases, vol.11, issue.11, pp.1764-1766, 2005.
DOI : 10.3201/eid1111.050168

S. Karki, P. Shakya, A. Cheng, S. Dumre, and K. Leder, Trends of Etiology and Drug Resistance in Enteric Fever in the Last Two Decades in Nepal: A Systematic Review and Meta-analysis, Clinical Infectious Diseases, vol.57, issue.10, pp.167-176, 2013.
DOI : 10.1093/cid/cit563

N. Punjabi, Enteric fever burden in North Jakarta, Indonesia: a prospective, community-based study, The Journal of Infection in Developing Countries, vol.7, issue.11, pp.781-787, 2013.
DOI : 10.3855/jidc.2629

W. Liang, Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A, PLoS ONE, vol.7, issue.9, p.45346, 2012.
DOI : 10.1371/journal.pone.0045346.s005

S. Gupta, Laboratory???Based Surveillance of Paratyphoid Fever in the United States: Travel and Antimicrobial Resistance, Clinical Infectious Diseases, vol.46, issue.11, pp.1656-1663, 2008.
DOI : 10.1086/587894

M. Tourdjman, Unusual increase in reported cases of paratyphoid A fever among travellers returning from Cambodia, Euro Surveill, vol.18, issue.39, p.18, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109921

A. Mutreja, Evidence for several waves of global transmission in the seventh cholera pandemic, Nature, vol.7, issue.7365, pp.462-465, 2011.
DOI : 10.1038/nature10392

M. Mcclelland, Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid, Nature Genetics, vol.60, issue.12, pp.1268-1274, 2004.
DOI : 10.1128/JB.184.9.2411-2419.2002

K. Holt, Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi, BMC Genomics, vol.10, issue.1, p.36, 2009.
DOI : 10.1186/1471-2164-10-36

C. Kuo and H. Ochman, The Extinction Dynamics of Bacterial Pseudogenes, PLoS Genetics, vol.5, issue.8, p.1001050, 2010.
DOI : 10.1371/journal.pgen.1001050.s001

A. Hottes, Bacterial Adaptation through Loss of Function, PLoS Genetics, vol.57, issue.7, p.1003617, 2013.
DOI : 10.1371/journal.pgen.1003617.s012

Z. Zhou, Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella enterica Serovar Agona, PLoS Genetics, vol.114, issue.4, p.1003471, 2013.
DOI : 10.1371/journal.pgen.1003471.s028

K. Holt, High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi, Nature Genetics, vol.149, issue.8, pp.987-993, 2008.
DOI : 10.1186/gb-2004-5-2-r12

M. Achtman, Insights from genomic comparisons of genetically monomorphic bacterial pathogens, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.108, issue.12, pp.860-867, 1590.
DOI : 10.1073/pnas.1016657108

X. Didelot, M. Achtman, J. Parkhill, N. Thomson, and D. Falush, A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: Convergence or divergence by homologous recombination?, Genome Research, vol.17, issue.1, pp.61-68, 2007.
DOI : 10.1101/gr.5512906

X. Didelot and D. Falush, Inference of Bacterial Microevolution Using Multilocus Sequence Data, Genetics, vol.175, issue.3, pp.1251-1266, 2007.
DOI : 10.1534/genetics.106.063305

A. Drummond, M. Suchard, D. Xie, and A. Rambaut, Bayesian Phylogenetics with BEAUti and the BEAST 1.7, Molecular Biology and Evolution, vol.29, issue.8, pp.1969-1973, 2012.
DOI : 10.1093/molbev/mss075

R. Bouckaert, BEAST 2: A Software Platform for Bayesian Evolutionary Analysis, PLoS Computational Biology, vol.30, issue.94, p.1003537, 2014.
DOI : 10.1371/journal.pcbi.1003537.s006

J. Smith, The detection and measurement of recombination from sequence data, Genetics, vol.153, issue.2, pp.1021-1027, 1999.

J. Meyer, Repeatability and Contingency in the Evolution of a Key Innovation in Phage Lambda, Science, vol.335, issue.6067, pp.428-432, 2012.
DOI : 10.1126/science.1214449

J. Barrick, Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, vol.156, issue.103, pp.1243-1247, 2009.
DOI : 10.1038/nature08480

URL : https://hal.archives-ouvertes.fr/hal-00435992

O. Tenaillon, The Molecular Diversity of Adaptive Convergence, Science, vol.335, issue.6067, pp.457-461, 2012.
DOI : 10.1126/science.1212986

K. Holt, High-throughput bacterial SNP typing identifies distinct clusters of SalmonellaTyphi causing typhoid in Nepalese children, BMC Infectious Diseases, vol.34, issue.4, p.144, 2010.
DOI : 10.1038/ng1470

I. Comas, Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved, Nature Genetics, vol.1, issue.6, pp.498-503, 2010.
DOI : 10.1093/bioinformatics/bti403

P. Roumagnac, Evolutionary History of Salmonella Typhi, Science, vol.314, issue.5803, pp.1301-1304, 2006.
DOI : 10.1126/science.1134933

N. Croucher, Rapid Pneumococcal Evolution in Response to Clinical Interventions, Science, vol.331, issue.6016, pp.430-434, 2011.
DOI : 10.1126/science.1198545

V. Kos, Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States, mBio, vol.3, issue.3, pp.112-124, 2012.
DOI : 10.1128/mBio.00112-12

M. Farhat, Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis, Nature Genetics, vol.5, issue.10, pp.1183-1189, 2013.
DOI : 10.1093/bioinformatics/bts184

K. Holt, Multidrug-Resistant Salmonella enterica Serovar Paratyphi A Harbors IncHI1 Plasmids Similar to Those Found in Serovar Typhi, Journal of Bacteriology, vol.189, issue.11, pp.4257-4264, 2007.
DOI : 10.1128/JB.00232-07

S. Chattopadhyay, S. Paul, D. Kisiela, E. Linardopoulou, and E. Sokurenko, Convergent Molecular Evolution of Genomic Cores in Salmonella enterica and Escherichia coli, Journal of Bacteriology, vol.194, issue.18, pp.5002-5011, 2012.
DOI : 10.1128/JB.00552-12

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-1591, 2007.
DOI : 10.1093/molbev/msm088

M. Achtman, Evolution, Population Structure, and Phylogeography of Genetically Monomorphic Bacterial Pathogens, Annual Review of Microbiology, vol.62, issue.1, pp.53-70, 2008.
DOI : 10.1146/annurev.micro.62.081307.162832

G. Morelli, Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity, Nature Genetics, vol.17, issue.12, pp.1140-1143, 2010.
DOI : 10.1128/JB.01786-08

URL : https://hal.archives-ouvertes.fr/pasteur-00836130

L. Gong and J. Bloom, Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution, PLoS Genetics, vol.97, issue.2, p.1004328, 2014.
DOI : 10.1371/journal.pgen.1004328.s005

M. Lynch, The frailty of adaptive hypotheses for the origins of organismal complexity, Proceedings of the National Academy of Sciences, vol.104, issue.Supplement 1, pp.8597-8604, 2007.
DOI : 10.1073/pnas.0702207104

M. Nei, Selectionism and Neutralism in Molecular Evolution, Molecular Biology and Evolution, vol.22, issue.12, pp.2318-2342, 2005.
DOI : 10.1093/molbev/msi242

S. Gagneux, The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis, Science, vol.312, issue.5782, pp.1944-1946, 2006.
DOI : 10.1126/science.1124410

D. Weinreich, N. Delaney, M. Depristo, and D. Hartl, Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins, Science, vol.312, issue.5770, pp.111-114, 2006.
DOI : 10.1126/science.1123539

C. Buckee, Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis, Proceedings of the National Academy of Sciences, vol.105, issue.39, pp.15082-15087, 2008.
DOI : 10.1073/pnas.0712019105

P. Zhu, Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis, Proceedings of the National Academy of Sciences, vol.98, issue.9, pp.5234-5239, 2001.
DOI : 10.1073/pnas.061386098

B. Linz, An African origin for the intimate association between humans and Helicobacter pylori, Nature, vol.4, issue.7130, pp.915-918, 2007.
DOI : 10.1038/nature05562

K. Holt, Tracking the establishment of local endemic populations of an emergent enteric pathogen, Proceedings of the National Academy of Sciences, vol.110, issue.43, pp.17522-17527, 2013.
DOI : 10.1073/pnas.1308632110

V. Sangal, Global Phylogeny of Shigella sonnei Strains from Limited Single Nucleotide Polymorphisms (SNPs) and Development of a Rapid and Cost-Effective SNP-Typing Scheme for Strain Identification by High-Resolution Melting Analysis: Fig 1, Journal of Clinical Microbiology, vol.51, issue.1, pp.303-305, 2013.
DOI : 10.1128/JCM.02238-12

K. Bos, A draft genome of Yersinia pestis from victims of the Black Death, Nature, vol.17, issue.7370, pp.506-510, 2011.
DOI : 10.1038/nature10549