C. Murray, Global malaria mortality between 1980 and 2010: a systematic analysis, The Lancet, vol.379, issue.9814, pp.413-431, 2012.
DOI : 10.1016/S0140-6736(12)60034-8

A. Dondorp, The Threat of Artemisinin-Resistant Malaria, New England Journal of Medicine, vol.365, issue.12, pp.1073-1075, 2011.
DOI : 10.1056/NEJMp1108322

M. Gardner, Genome sequence of the human malaria parasite Plasmodium falciparum, Nature, vol.241, issue.6906, pp.498-511, 2002.
DOI : 10.1038/nature01099

D. Silva and E. , Specific DNA-binding by Apicomplexan AP2 transcription factors, Proceedings of the National Academy of Sciences, vol.105, issue.24, pp.8393-8398, 2008.
DOI : 10.1073/pnas.0801993105

S. Balaji, M. Babu, L. Iyer, and L. Aravind, Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains, Nucleic Acids Research, vol.33, issue.13, pp.3994-4006, 2005.
DOI : 10.1093/nar/gki709

L. Freitas-junior, Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites, Cell, vol.121, issue.1, pp.25-36, 2005.
DOI : 10.1016/j.cell.2005.01.037

L. Jiang, Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.2224-2229, 2010.
DOI : 10.1073/pnas.0913396107

L. Cui, Q. Fan, L. Cui, and J. Miao, Histone lysine methyltransferases and demethylases in Plasmodium falciparum, International Journal for Parasitology, vol.38, issue.10, pp.1083-1097, 2008.
DOI : 10.1016/j.ijpara.2008.01.002

W. Sullivan, J. Naguleswaran, A. Angel, and S. , Histones and histone modifications in protozoan parasites, Cellular Microbiology, vol.90, issue.12, pp.1850-1861, 2006.
DOI : 10.1128/EC.1.2.191-199.2002

J. Volz, Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum, International Journal for Parasitology, vol.40, issue.1, pp.109-121, 2010.
DOI : 10.1016/j.ijpara.2009.09.002

J. Lopez-rubio, L. Mancio-silva, and A. Scherf, Genome-wide Analysis of Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive Centers in Malaria Parasites, Cell Host & Microbe, vol.5, issue.2, pp.179-190, 2009.
DOI : 10.1016/j.chom.2008.12.012

A. Salcedo-amaya, Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum, Proceedings of the National Academy of Sciences, vol.106, issue.24, pp.9655-9660, 2009.
DOI : 10.1073/pnas.0902515106

J. Volz, PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division, Cell Host & Microbe, vol.11, issue.1, pp.7-18, 2012.
DOI : 10.1016/j.chom.2011.11.011

J. Lopez-rubio, 5' flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites, Molecular Microbiology, vol.439, issue.0, pp.1296-1305, 2007.
DOI : 10.1038/sj.embor.7400466

D. Baruch, Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes, Cell, vol.82, issue.1, pp.77-87, 1995.
DOI : 10.1016/0092-8674(95)90054-3

X. Su, The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes, Cell, vol.82, issue.1, pp.89-100, 1995.
DOI : 10.1016/0092-8674(95)90055-1

J. Smith, Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes, Cell, vol.82, issue.1, pp.101-110, 1995.
DOI : 10.1016/0092-8674(95)90056-X

R. Copeland, M. Solomon, and V. Richon, Protein methyltransferases as a target class for drug discovery, Nature Reviews Drug Discovery, vol.25, issue.9, pp.724-732, 2009.
DOI : 10.1038/nrd2974

F. Cherblanc, N. Chapman-rothe, R. Brown, and M. Fuchter, Current limitations and future opportunities for epigenetic therapies, Future Medicinal Chemistry, vol.4, issue.4, pp.425-446, 2012.
DOI : 10.4155/fmc.12.7

L. Cui, J. Miao, and L. Cui, Cytotoxic Effect of Curcumin on Malaria Parasite Plasmodium falciparum: Inhibition of Histone Acetylation and Generation of Reactive Oxygen Species, Antimicrobial Agents and Chemotherapy, vol.51, issue.2, pp.488-494, 2007.
DOI : 10.1128/AAC.01238-06

L. Cui, Histone Acetyltransferase Inhibitor Anacardic Acid Causes Changes in Global Gene Expression during In Vitro Plasmodium falciparum Development, Eukaryotic Cell, vol.7, issue.7, pp.1200-1210, 2008.
DOI : 10.1128/EC.00063-08

D. Prusty, Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth, FEMS Microbiology Letters, vol.282, issue.2, pp.266-272, 2008.
DOI : 10.1111/j.1574-6968.2008.01135.x

S. Darkin-rattray, Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase, Proceedings of the National Academy of Sciences, vol.93, issue.23, pp.13143-13147, 1996.
DOI : 10.1073/pnas.93.23.13143

K. Andrews, Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues, Antimicrobial Agents and Chemotherapy, vol.52, issue.4, pp.1454-1461, 2008.
DOI : 10.1128/AAC.00757-07

S. Agbor-enoh, C. Seudieu, E. Davidson, A. Dritschilo, and M. Jung, Novel Inhibitor of Plasmodium Histone Deacetylase That Cures P. berghei-Infected Mice, Antimicrobial Agents and Chemotherapy, vol.53, issue.5, pp.1727-1734, 2009.
DOI : 10.1128/AAC.00729-08

G. Dow, Antimalarial Activity of Phenylthiazolyl-Bearing Hydroxamate-Based Histone Deacetylase Inhibitors, Antimicrobial Agents and Chemotherapy, vol.52, issue.10, pp.3467-3477, 2008.
DOI : 10.1128/AAC.00439-08

S. Kubicek, Reversal of H3K9me2 by a Small-Molecule Inhibitor for the G9a Histone Methyltransferase, Molecular Cell, vol.25, issue.3, pp.473-481, 2007.
DOI : 10.1016/j.molcel.2007.01.017

Y. Shi, A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells, Cell Stem Cell, vol.2, issue.6, pp.525-528, 2008.
DOI : 10.1016/j.stem.2008.05.011

Y. Shi, Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds, Cell Stem Cell, vol.3, issue.5, pp.568-574, 2008.
DOI : 10.1016/j.stem.2008.10.004

M. Vedadi, A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells, Nature Chemical Biology, vol.7, issue.8, pp.566-574, 2011.
DOI : 10.1016/j.stem.2008.02.001

URL : https://hal.archives-ouvertes.fr/hal-01001185

F. Liu, Discovery of a 2,4-Diamino-7-aminoalkoxyquinazoline as a Potent and Selective Inhibitor of Histone Lysine Methyltransferase G9a, Journal of Medicinal Chemistry, vol.52, issue.24, pp.7950-7953, 2009.
DOI : 10.1021/jm901543m

F. Liu, Protein Lysine Methyltransferase G9a Inhibitors: Design, Synthesis, and Structure Activity Relationships of 2,4-Diamino-7-aminoalkoxy-quinazolines., Journal of Medicinal Chemistry, vol.53, issue.15, pp.5844-5857, 2010.
DOI : 10.1021/jm100478y

F. Liu, Optimization of Cellular Activity of G9a Inhibitors 7-Aminoalkoxy-quinazolines, Journal of Medicinal Chemistry, vol.54, issue.17, pp.6139-6150, 2011.
DOI : 10.1021/jm200903z

Y. Chang, Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294, Nature Structural & Molecular Biology, vol.47, issue.3, pp.312-317, 2009.
DOI : 10.1038/nsmb.1560

Y. Chang, Adding a Lysine Mimic in the Design of Potent Inhibitors of Histone Lysine Methyltransferases, Journal of Molecular Biology, vol.400, issue.1, pp.1-7, 2010.
DOI : 10.1016/j.jmb.2010.04.048

T. Skinner, L. Manning, W. Johnston, and T. Davis, In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs, International Journal for Parasitology, vol.26, issue.5, pp.519-525, 1996.
DOI : 10.1016/0020-7519(96)89380-5

N. White, Assessment of the pharmacodynamic properties of antimalarial drugs in vivo, Antimicrob Agents Chemother, vol.41, pp.1413-1422, 1997.

E. Dahl and P. Rosenthal, Multiple Antibiotics Exert Delayed Effects against the Plasmodium falciparum Apicoplast, Antimicrobial Agents and Chemotherapy, vol.51, issue.10, pp.3485-3490, 2007.
DOI : 10.1128/AAC.00527-07

T. Wells, P. Alonso, and W. Gutteridge, New medicines to improve control and contribute to the eradication of malaria, Nature Reviews Drug Discovery, vol.295, issue.11, pp.879-891, 2009.
DOI : 10.1038/nrd2972

L. Sanz, P. falciparum In Vitro Killing Rates Allow to Discriminate between Different Antimalarial Mode-of-Action, PLoS ONE, vol.193, issue.10, p.30949, 2012.
DOI : 10.1371/journal.pone.0030949.s009

URL : https://hal.archives-ouvertes.fr/hal-00655430

A. Goel, A. Kunnumakkara, and B. Aggarwal, Curcumin as ???Curecumin???: From kitchen to clinic, Biochemical Pharmacology, vol.75, issue.4, pp.787-809, 2008.
DOI : 10.1016/j.bcp.2007.08.016

J. Marfurt, Ex Vivo Activity of Histone Deacetylase Inhibitors against Multidrug-Resistant Clinical Isolates of Plasmodium falciparum and P. vivax, Antimicrobial Agents and Chemotherapy, vol.55, issue.3, pp.961-966, 2011.
DOI : 10.1128/AAC.01220-10

K. Andrews, T. Tran, N. Wheatley, and D. Fairlie, Targeting Histone Deacetylase Inhibitors for Anti-Malarial Therapy, Current Topics in Medicinal Chemistry, vol.9, issue.3, pp.292-308, 2009.
DOI : 10.2174/156802609788085313

W. Trager and J. Jensen, Human malaria parasites in continuous culture, Science, vol.193, issue.4254, pp.673-675, 1976.
DOI : 10.1126/science.781840

M. Smilkstein, N. Sriwilaijaroen, J. Kelly, P. Wilairat, and M. Riscoe, Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1803-1806, 2004.
DOI : 10.1128/AAC.48.5.1803-1806.2004

T. Ishino, Y. Orito, Y. Chinzei, and M. Yuda, A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell, Molecular Microbiology, vol.59, issue.4, pp.1175-1184, 2006.
DOI : 10.1016/S0166-6851(01)00304-8

H. Nmr, 91 (s, 3H), 3.88 (s, 3H), 1H), 5.11 (d, J = 7.2 Hz, 1H), 4.09 (m, 1H)86 (t, J = 6.4 Hz, 2H), 3.52 (s, 2H), 2.89 (d, J = 11.2 Hz, 2H), 2.68 (m, 2H), pp.32-39

F. Liu, Protein Lysine Methyltransferase G9a Inhibitors: Design, Synthesis, and Structure Activity Relationships of 2,4-Diamino-7-aminoalkoxy-quinazolines., Journal of Medicinal Chemistry, vol.53, issue.15, pp.5844-5857, 2010.
DOI : 10.1021/jm100478y

. Fig, Sequence comparison of selected human and P. falciparum HKMT C-terminal regions containing the catalytic SET domains Human MLL (NP_001184033.1) and parasite PfSET1 (PF3D7_0629700) represent H3K4-specific enzymes; human G9a (NP_006700.3) and parasite PfSET3 (PF3D7_0827800) represent H3K9-specific enzymes. The canonical SET domain is marked above the sequences. Underlined residues in PfSET1 and PfSET3 indicate N termini of recombinant protein constructs expressed in Escherichia coli with an N-terminal 6×-his tag but