B. Alberts, The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists, Cell, vol.92, issue.3, pp.291-294, 1998.
DOI : 10.1016/S0092-8674(00)80922-8

J. Pereira-leal, E. Levy, and S. Teichmann, The origins and evolution of functional modules: lessons from protein complexes, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.291, issue.2, pp.507-517, 2006.
DOI : 10.1002/jez.1064

B. Michel, G. Grompone, M. Florès, and V. Bidnenko, Multiple pathways process stalled replication forks, Proceedings of the National Academy of Sciences, vol.101, issue.35, pp.12783-12788, 2004.
DOI : 10.1073/pnas.0401586101

S. Abby and E. Rocha, The Non-Flagellar Type III Secretion System Evolved from the Bacterial Flagellum and Diversified into Host-Cell Adapted Systems, PLoS Genetics, vol.8, issue.9, p.1002983, 2012.
DOI : 10.1371/journal.pgen.1002983.s017

URL : https://hal.archives-ouvertes.fr/pasteur-01374947

J. Galagan, C. Nusbaum, A. Roy, M. Endrizzi, and P. Macdonald, The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity, Genome Research, vol.12, issue.4, pp.532-542, 2002.
DOI : 10.1101/gr.223902

M. Huynen, B. Snel, W. Lathe, and P. Bork, Predicting Protein Function by Genomic Context: Quantitative Evaluation and Qualitative Inferences, Genome Research, vol.10, issue.8, pp.1204-1210, 2000.
DOI : 10.1101/gr.10.8.1204

R. Overbeek, M. Fonstein, D. Souza, M. Pusch, G. Maltsev et al., The use of gene clusters to infer functional coupling, Proceedings of the National Academy of Sciences, vol.96, issue.6, pp.2896-2901, 1999.
DOI : 10.1073/pnas.96.6.2896

W. Lathe, B. Snel, and P. Bork, Gene context conservation of a higher order than operons, Trends in Biochemical Sciences, vol.25, issue.10, pp.474-479, 2000.
DOI : 10.1016/S0968-0004(00)01663-7

A. Zaslaver, A. Mayo, M. Ronen, and U. Alon, Optimal gene partition into operons correlates with gene functional order, Physical Biology, vol.3, issue.3, pp.183-189, 2006.
DOI : 10.1088/1478-3975/3/3/003

R. Finn, J. Tate, J. Mistry, P. Coggill, and S. Sammut, The Pfam protein families database, Nucleic Acids Research, vol.36, issue.Database, pp.281-288, 2008.
DOI : 10.1093/nar/gkm960

URL : https://hal.archives-ouvertes.fr/hal-01294685

D. Haft, B. Loftus, D. Richardson, F. Yang, and J. Eisen, TIGRFAMs: a protein family resource for the functional identification of proteins, Nucleic Acids Research, vol.29, issue.1, pp.41-43, 2001.
DOI : 10.1093/nar/29.1.41

F. Servant, C. Bru, S. Carrere, E. Courcelle, and J. Gouzy, ProDom: Automated clustering of homologous domains, Briefings in Bioinformatics, vol.3, issue.3, pp.246-251, 2002.
DOI : 10.1093/bib/3.3.246

URL : https://hal.archives-ouvertes.fr/hal-00427238

S. Eddy, Accelerated Profile HMM Searches, PLoS Computational Biology, vol.21, issue.10, p.1002195, 2011.
DOI : 10.1371/journal.pcbi.1002195.g006

R. Barrangou and L. Marraffini, CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity, Molecular Cell, vol.54, issue.2, pp.234-244, 2014.
DOI : 10.1016/j.molcel.2014.03.011

P. Hsu, E. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Cell, vol.157, issue.6, pp.1262-1278, 2014.
DOI : 10.1016/j.cell.2014.05.010

R. Barrangou, Cas9 Targeting and the CRISPR Revolution, Science, vol.344, issue.6185, pp.707-708, 2014.
DOI : 10.1126/science.1252964

C. Bland, T. Ramsey, F. Sabree, M. Lowe, and K. Brown, CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats, BMC Bioinformatics, vol.8, issue.1, p.209, 2007.
DOI : 10.1186/1471-2105-8-209

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Research, vol.35, issue.Web Server, pp.52-57, 2007.
DOI : 10.1093/nar/gkm360

URL : https://hal.archives-ouvertes.fr/hal-00194414

R. Edgar, PILER-CR: fast and accurate identification of CRISPR repeats, BMC Bioinformatics, vol.8, issue.1, p.18, 2007.
DOI : 10.1186/1471-2105-8-18

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, and J. Papadopoulos, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, issue.1, p.421, 2009.
DOI : 10.1186/1471-2105-10-421

S. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.
DOI : 10.1093/bioinformatics/14.9.755

D. Haft, J. Selengut, R. Richter, D. Harkins, and M. Basu, TIGRFAMs and Genome Properties in 2013, Nucleic Acids Research, vol.41, issue.D1, pp.387-395, 2013.
DOI : 10.1093/nar/gks1234

D. Haft, J. Selengut, E. Mongodin, and K. Nelson, A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes, PLoS Computational Biology, vol.21, issue.6, p.60, 2005.
DOI : 1367-4803(2005)021[0293:GPASFT]2.0.CO;2

K. Makarova, D. Haft, R. Barrangou, S. Brouns, and E. Charpentier, Evolution and classification of the CRISPR???Cas systems, Nature Reviews Microbiology, vol.35, issue.6, pp.467-477, 2011.
DOI : 10.1038/nrmicro2577

R. Staals and S. Brouns, Distribution and Mechanism of the Type I CRISPR-Cas Systems, CRISPR-Cas Systems -RNA-mediated Adaptive Immunity in Bacteria and Archaea, 2013.
DOI : 10.1007/978-3-662-45794-8_6

M. Touchon and E. Rocha, The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella, PLoS ONE, vol.14, issue.6, p.11126, 2010.
DOI : 10.1371/journal.pone.0011126.s006

URL : https://hal.archives-ouvertes.fr/pasteur-01374940

J. Bondy-denomy and A. Davidson, To acquire or resist: the complex biological effects of CRISPR???Cas systems, Trends in Microbiology, vol.22, issue.4, pp.218-225, 2014.
DOI : 10.1016/j.tim.2014.01.007