P. Hsieh, . Vf-segers, C. Davis, . Macgillivray, . Gannon et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nature Medicine, vol.116, issue.8, pp.970-974, 2007.
DOI : 10.1038/nm1618

S. Senyo, C. Steinhauser, . Pizzimenti, . Vk-yang, . Cai et al., Mammalian heart renewal by pre-existing cardiomyocytes, Nature, vol.331, issue.7432, pp.433-436, 2013.
DOI : 10.1038/nature11682

O. Bergmann, . Bhardwaj, . Bernard, . Zdunek, . Barnabe-heider et al., Evidence for Cardiomyocyte Renewal in Humans, Science, vol.324, issue.5923, pp.98-102, 2009.
DOI : 10.1126/science.1164680

URL : https://hal.archives-ouvertes.fr/hal-00374382

J. Kajstura, . Urbanek, . Perl, . Hosoda, . Zheng et al., Cardiomyogenesis in the Adult Human Heart, Circulation Research, vol.107, issue.2, pp.305-315, 2010.
DOI : 10.1161/CIRCRESAHA.110.223024

K. Malliaras, Y. Zhang, . Seinfeld, . Galang, . Tseliou et al., Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart, EMBO Molecular Medicine, vol.5, issue.2, pp.191-209, 2013.
DOI : 10.1002/emmm.201201737

E. Porrello, A. Mahmoud, J. Simpson, J. Hill, E. Richardson et al., Transient Regenerative Potential of the Neonatal Mouse Heart, Science, vol.331, issue.6020, pp.1078-1080, 2011.
DOI : 10.1126/science.1200708

E. Porrello, A. Mahmoud, . Simpson, . Johnson, . Grinsfelder et al., Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family, Proceedings of the National Academy of Sciences, vol.110, issue.1, pp.187-192, 2013.
DOI : 10.1073/pnas.1208863110

F. Clubb, J. , and S. Bishop, Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy, Lab Invest, vol.50, pp.571-577, 1984.

M. Soonpaa, . Kim, M. Pajak, L. Franklin, and . Field, Cardiomyocyte DNA synthesis and binucleation during murine development, Am J Physiol, vol.271, pp.2183-2189, 1996.

S. Goldman, Stem and progenitor cell???based therapy of the human central nervous system, Nature Biotechnology, vol.16, issue.7, pp.862-871, 2005.
DOI : 10.1038/35097581

D. Warejcka, . Harvey, . Taylor, P. Young, and . Lucas, A Population of Cells Isolated from Rat Heart Capable of Differentiating into Several Mesodermal Phenotypes, Journal of Surgical Research, vol.62, issue.2, pp.233-242, 1996.
DOI : 10.1006/jsre.1996.0201

R. Smith, . Barile, . Cho, . Leppo, . Hare et al., Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens, Circulation, vol.115, issue.7, pp.896-908, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655209

A. Hierlihy, . Seale, M. Cg-lobe, L. Rudnicki, and . Megeney, The post-natal heart contains a myocardial stem cell population, FEBS Letters, vol.91, issue.1-3, pp.239-243, 2002.
DOI : 10.1016/S0014-5793(02)03477-4

C. Martin, . Ap-meeson, . Sm-robertson, J. Tj-hawke, . Richardson et al., Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart, Developmental Biology, vol.265, issue.1, pp.262-275, 2004.
DOI : 10.1016/j.ydbio.2003.09.028

O. Pfister, . Mouquet, . Jain, . Summer, . Helmes et al., CD31- but Not CD31+ Cardiac Side Population Cells Exhibit Functional Cardiomyogenic Differentiation, Circulation Research, vol.97, issue.1, pp.52-61, 2005.
DOI : 10.1161/01.RES.0000173297.53793.fa

T. Oyama, H. Nagai, . Wada, . Naito, . Matsuura et al., Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo, The Journal of Cell Biology, vol.265, issue.3, pp.329-341, 2007.
DOI : 10.1038/nm0901-1028

K. Yamahara, . Fukushima, . Sr-coppen, . Le-felkin, P. Varela-carver et al., Heterogeneic nature of adult cardiac side population cells, Biochemical and Biophysical Research Communications, vol.371, issue.4, pp.615-620, 2008.
DOI : 10.1016/j.bbrc.2008.04.021

E. Messina, . De-angelis, . Frati, . Morrone, . Chimenti et al., Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-921, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

J. Ye, H. Boyle, . Shih, Y. Sievers, . Zhang et al., Sca-1+ Cardiosphere-Derived Cells Are Enriched for Isl1-Expressing Cardiac Precursors and Improve Cardiac Function after Myocardial Injury, PLoS ONE, vol.99, issue.1, p.30329, 2012.
DOI : 10.1371/journal.pone.0030329.s007

A. Beltrami, . Barlucchi, . Torella, . Baker, . Limana et al., Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration, Cell, vol.114, issue.6, pp.763-776, 2003.
DOI : 10.1016/S0092-8674(03)00687-1

URL : http://doi.org/10.1016/s0092-8674(03)00687-1

E. Gambini, . Pompilio, . Biondi, . Alamanni, M. Mc-capogrossi et al., C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment, Cardiovascular Research, vol.89, issue.2, pp.362-373, 2011.
DOI : 10.1093/cvr/cvq292

URL : http://cardiovascres.oxfordjournals.org/cgi/content/short/89/2/362

K. Tateishi, . Ashihara, . Takehara, . Nomura, . Honsho et al., Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration, Journal of Cell Science, vol.120, issue.10, pp.1791-1800, 2007.
DOI : 10.1242/jcs.006122

J. Chong, . Chandrakanthan, . Xaymardan, . Ns-asli, . Li et al., Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin, Cell Stem Cell, vol.9, issue.6, pp.527-540, 2011.
DOI : 10.1016/j.stem.2011.10.002

M. Takamiya, K. Haider, and M. Ashraf, Identification and Characterization of a Novel Multipotent Sub-Population of Sca-1+ Cardiac Progenitor Cells for Myocardial Regeneration, PLoS ONE, vol.326, issue.9, p.25265, 2011.
DOI : 10.1371/journal.pone.0025265.s003

H. Oh, . Sb-bradfute, . Td-gallardo, . Nakamura, Y. Gaussin et al., Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.12313-12318, 2003.
DOI : 10.1073/pnas.2132126100

L. Balsam, . Wagers, . Christensen, I. Kofidis, R. Weissman et al., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, vol.428, issue.6983, pp.668-673, 2004.
DOI : 10.1038/nature02460

A. Wagers and I. Weissman, Plasticity of Adult Stem Cells, Cell, vol.116, issue.5, pp.639-648, 2004.
DOI : 10.1016/S0092-8674(04)00208-9

S. Lyngbaek, J. Schneider, S. Hansen, and . Sheikh, Cardiac regeneration by resident stem and progenitor cells in the adult heart, Basic Research in Cardiology, vol.100, issue.2, pp.101-114, 2007.
DOI : 10.1007/s00395-007-0638-3

V. Segers and R. Lee, Stem-cell therapy for cardiac disease, Nature, vol.18, issue.7181, pp.937-942, 2008.
DOI : 10.1038/nature06800

. Siggins, Human cardiac stem cells, Proc Natl Acad Sci U S A, vol.104, pp.14068-14073, 2007.

J. Ferreira-martins, . Ogorek, . Cappetta, . Matsuda, D. D. Signore et al., Cardiomyogenesis in the Developing Heart Is Regulated by C-Kit-Positive Cardiac Stem Cells, Circulation Research, vol.110, issue.5, pp.701-715, 2012.
DOI : 10.1161/CIRCRESAHA.111.259507

D. Eberhard and H. Jockusch, Patterns of myocardial histogenesis as revealed by mouse chimeras, Developmental Biology, vol.278, issue.2, pp.336-346, 2005.
DOI : 10.1016/j.ydbio.2004.11.015

D. Orlic, . Kajstura, . Chimenti, . Limana, . Jakoniuk et al., Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10344-10349, 2001.
DOI : 10.1073/pnas.181177898

F. Quaini, . Urbanek, . Beltrami, C. Finato, . Beltrami et al., Chimerism of the Transplanted Heart, New England Journal of Medicine, vol.346, issue.1, pp.5-15, 2002.
DOI : 10.1056/NEJMoa012081

S. Dimmeler, A. Zeiher, and M. Schneider, Unchain my heart: the scientific foundations of cardiac repair, Journal of Clinical Investigation, vol.115, issue.3, pp.572-583, 2005.
DOI : 10.1172/JCI200524283

X. Wang, Y. Hu, . Nakamura, . Lee, A. Zhang et al., Cardiac Progenitor Cell Population in Postinfarction Left Ventricular Remodeling, Stem Cells, vol.96, issue.7, pp.1779-1788, 2006.
DOI : 10.1634/stemcells.2005-0386

P. Van-vliet, . Roccio, . Smits, C. Van-oorschot, . Metz et al., Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy, Netherlands Heart Journal, vol.16, issue.5, pp.163-169, 2008.
DOI : 10.1007/BF03086138

A. Freire, . Nascimento, . Forte, . Valente, . Tp-resende et al., Cardiac Progenitor Cells in Long-Term Culture: A Step Closer to Standardization, Stem Cells and Development, vol.23, issue.9, pp.1012-1026, 2014.
DOI : 10.1089/scd.2013.0305

H. Reinecke, W. Minami, M. Zhu, and . Laflamme, Cardiogenic Differentiation and Transdifferentiation of Progenitor Cells, Circulation Research, vol.103, issue.10, pp.1058-1071, 2008.
DOI : 10.1161/CIRCRESAHA.108.180588

C. Gonzales and T. Pedrazzini, Progenitor cell therapy for heart disease, Experimental Cell Research, vol.315, issue.18, pp.3077-3085, 2009.
DOI : 10.1016/j.yexcr.2009.09.006

R. Bolli, D. D. Chugh, . Amario, . Loughran, . Stoddard et al., Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial, The Lancet, vol.378, issue.9806, pp.1847-1857, 2011.
DOI : 10.1016/S0140-6736(11)61590-0

R. Makkar, . Smith, K. Cheng, L. Malliaras, . Thomson et al., Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial, The Lancet, vol.379, issue.9819, pp.895-904, 2012.
DOI : 10.1016/S0140-6736(12)60195-0

M. Van-de-rijn, G. Heimfeld, I. Spangrude, and . Weissman, Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family., Proceedings of the National Academy of Sciences, vol.86, issue.12, pp.4634-4638, 1989.
DOI : 10.1073/pnas.86.12.4634

D. Kotton, . Summer, . Sun, A. Ma, and . Fine, Stem cell antigen-1 expression in the pulmonary vascular endothelium, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.284, issue.6, pp.990-996, 2003.
DOI : 10.1152/ajplung.00415.2002

G. Luna, J. Paez, and J. Cardier, Expression of the Hematopoietic Stem Cell Antigen Sca-1 (LY-6A/E) in Liver Sinusoidal Endothelial Cells: Possible Function of Sca-1 in Endothelial Cells, Stem Cells and Development, vol.13, issue.5, pp.528-535, 2004.
DOI : 10.1089/scd.2004.13.528

A. Tsuchiya, . Heike, . Baba, . Fujino, Y. Umeda et al., Sca-1+ endothelial cells (SPECs) reside in the portal area of the liver and contribute to rapid recovery from acute liver disease, Biochemical and Biophysical Research Communications, vol.365, issue.3, pp.595-601, 2008.
DOI : 10.1016/j.bbrc.2007.10.150

S. Kang, . Shinojima, . Hossain, . Gumin, . Yong et al., Isolation and Perivascular Localization of Mesenchymal Stem Cells From Mouse Brain, Neurosurgery, vol.67, issue.3, pp.711-720, 2010.
DOI : 10.1227/01.NEU.0000377859.06219.78

A. Smits, C. Van-vliet, . Metz, . Korfage, P. Sluijter et al., Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology, Nature Protocols, vol.36, issue.2, pp.232-243, 2009.
DOI : 10.1038/nprot.2006.236

A. Asakura and M. Rudnicki, Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation, Experimental Hematology, vol.30, issue.11, pp.1339-1345, 2002.
DOI : 10.1016/S0301-472X(02)00954-2

G. Challen and M. Little, A Side Order of Stem Cells: The SP Phenotype, Stem Cells, vol.23, issue.1, pp.3-12, 2006.
DOI : 10.1634/stemcells.2005-0116

H. Oh, . Chi, Y. Sb-bradfute, . Mishina, . Pocius et al., Cardiac Muscle Plasticity in Adult and Embryo by Heart-Derived Progenitor Cells, Annals of the New York Academy of Sciences, vol.92, issue.1, pp.182-189, 2004.
DOI : 10.1196/annals.1302.015

S. Uchida, . De-gaspari, . Kostin, . Jenniches, Y. Kilic et al., Sca1-Derived Cells Are a Source of Myocardial Renewal in the Murine Adult Heart, Stem Cell Reports, vol.1, issue.5, pp.397-410, 2013.
DOI : 10.1016/j.stemcr.2013.09.004

B. Bailey, N. Fransioli, . Gude, . Alvarez, A. Zhan et al., Sca-1 Knockout Impairs Myocardial and Cardiac Progenitor Cell Function, Circulation Research, vol.111, issue.6, pp.750-760, 2012.
DOI : 10.1161/CIRCRESAHA.112.274662

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463406

N. Rosenblatt-velin, . Ogay, W. Felley, T. Stanford, and . Pedrazzini, Cardiac dysfunction and impaired compensatory response to pressure overload in mice deficient in stem cell antigen-1, The FASEB Journal, vol.26, issue.1, pp.229-239, 2012.
DOI : 10.1096/fj.11-189605

H. Zhou, Z. Bian, . Zong, . Deng, D. Yan et al., Stem Cell Antigen 1 Protects Against Cardiac Hypertrophy and Fibrosis After Pressure Overload, Hypertension, vol.60, issue.3, pp.802-809, 2012.
DOI : 10.1161/HYPERTENSIONAHA.112.198895

K. Matsuura, . Honda, . Nagai, . Fukushima, . Iwanaga et al., Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice, Journal of Clinical Investigation, vol.119, pp.2204-2217, 2009.
DOI : 10.1172/JCI37456DS1

C. Huang, . Gu, . Yu, J. Mc-manukyan, M. Poynter et al., Sca-1+ Cardiac Stem Cells Mediate Acute Cardioprotection via Paracrine Factor SDF-1 following Myocardial Ischemia/Reperfusion, PLoS ONE, vol.295, issue.12, p.29246, 2011.
DOI : 10.1371/journal.pone.0029246.t001

URL : http://doi.org/10.1371/journal.pone.0029246

H. Maxeiner, . Krehbiehl, . Muller, . Woitasky, . Akinturk et al., New insights into paracrine mechanisms of human cardiac progenitor cells, European Journal of Heart Failure, vol.1226, issue.7, pp.730-737, 2010.
DOI : 10.1093/eurjhf/hfq063

S. Ryzhov, . Ae-goldstein, . Sv-novitskiy, I. Mr-blackburn, I. Biaggioni et al., Role of A2B Adenosine Receptors in Regulation of Paracrine Functions of Stem Cell Antigen 1-Positive Cardiac Stromal Cells, Journal of Pharmacology and Experimental Therapeutics, vol.341, issue.3, pp.764-774, 2012.
DOI : 10.1124/jpet.111.190835

M. Gnecchi, A. Zhang, V. Ni, and . Dzau, Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy, Circulation Research, vol.103, issue.11, pp.1204-1219, 2008.
DOI : 10.1161/CIRCRESAHA.108.176826

J. Burchfield and S. Dimmeler, Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis, Fibrogenesis & Tissue Repair, vol.1, issue.1, p.4, 2008.
DOI : 10.1186/1755-1536-1-4

D. Nascimento, . Mosqueira, . Sousa, . Teixeira, . Filipe et al., Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms, Stem Cell Research & Therapy, vol.5, issue.1, p.5, 2014.
DOI : 10.1038/nm912

URL : http://doi.org/10.1186/scrt394

N. Bax, . Van-marion, . Shah, C. Mj-goumans, D. Bouten et al., Matrix production and remodeling capacity of cardiomyocyte progenitor cells during in vitro differentiation, Journal of Molecular and Cellular Cardiology, vol.53, issue.4, pp.497-508, 2012.
DOI : 10.1016/j.yjmcc.2012.07.003

V. Thannickal, . Lee, . White, . Cui, . Jm-larios et al., Myofibroblast Differentiation by Transforming Growth Factor-??1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase, Journal of Biological Chemistry, vol.278, issue.14, pp.12384-12389, 2003.
DOI : 10.1074/jbc.M208544200

G. Forte, . Carotenuto, . Pagliari, . Pagliari, . Cossa et al., Criticality of the Biological and Physical Stimuli Array Inducing Resident Cardiac Stem Cell Determination, Stem Cells, vol.24, issue.8, pp.2093-2103, 2008.
DOI : 10.1634/stemcells.2008-0061

D. Mosqueira, . Pagliari, . Uto, . Ebara, C. Romanazzo et al., Hippo Pathway Effectors Control Cardiac Progenitor Cell Fate by Acting as Dynamic Sensors of Substrate Mechanics and Nanostructure, ACS Nano, vol.8, issue.3, pp.2033-2047, 2014.
DOI : 10.1021/nn4058984

V. Navaratnam, . Mh-kaufman, S. Skepper, K. Barton, and . Guttridge, Differentiation of the myocardial rudiment of mouse embryos: an ultrastructural study including freeze-fracture replication, J Anat, vol.146, pp.65-85, 1986.

A. Moretti, . Caron, . Nakano, . Lam, . Bernshausen et al., Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol.127, issue.6, pp.1151-1165, 2006.
DOI : 10.1016/j.cell.2006.10.029

S. Kattman, E. Adler, and G. Keller, Specification of Multipotential Cardiovascular Progenitor Cells During Embryonic Stem Cell Differentiation and Embryonic Development, Trends in Cardiovascular Medicine, vol.17, issue.7, pp.240-246, 2007.
DOI : 10.1016/j.tcm.2007.08.004

O. Prall, . Mk-menon, Y. Solloway, . Watanabe, . Zaffran et al., An Nkx2-5/Bmp2/Smad1 Negative Feedback Loop Controls Heart Progenitor Specification and Proliferation, Cell, vol.128, issue.5, pp.947-959, 2007.
DOI : 10.1016/j.cell.2007.01.042

URL : https://hal.archives-ouvertes.fr/hal-00159578

D. Sassoon, I. Garner, and M. Buckingham, Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo, Development, vol.104, pp.155-164, 1988.

K. Nishii and Y. Shibata, Mode and determination of the initial contraction stage in the mouse embryo heart, Anatomy and Embryology, vol.56, issue.2, pp.95-100, 2006.
DOI : 10.1007/s00429-005-0065-x

T. Lints, . Parsons, I. Hartley, R. Lyons, and . Harvey, Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants, Development, vol.119, pp.419-431, 1993.

S. Kubalak, . Wc-miller-hance, E. Tx-o-'brien, K. Dyson, and . Chien, Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis, J Biol Chem, vol.269, pp.16961-16970, 1994.

C. Cai, Y. Liang, . Shi, . Chu, J. Sl-pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

R. Kelly, N. Brown, and M. Buckingham, The Arterial Pole of the Mouse Heart Forms from Fgf10-Expressing Cells in Pharyngeal Mesoderm, Developmental Cell, vol.1, issue.3, pp.435-440, 2001.
DOI : 10.1016/S1534-5807(01)00040-5

B. De-boer, G. Van-den-berg, P. De-boer, A. Moorman, and J. Ruijter, Growth of the developing mouse heart: An interactive qualitative and quantitative 3D atlas, Developmental Biology, vol.368, issue.2, pp.203-213, 2012.
DOI : 10.1016/j.ydbio.2012.05.001

D. Sedmera, . Reckova, . Dealmeida, . Sr-coppen, R. Sw-kubalak et al., Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system, The Anatomical Record, vol.88, issue.1, pp.773-777, 2003.
DOI : 10.1002/ar.a.10085

A. Moorman, N. Webb, W. Brown, R. Lamers, and . Anderson, DEVELOPMENT OF THE HEART: (1) FORMATION OF THE CARDIAC CHAMBERS AND ARTERIAL TRUNKS, Heart, vol.89, issue.7, pp.806-814, 2003.
DOI : 10.1136/heart.89.7.806

S. Wu, Y. Fujiwara, . Sm-cibulsky, C. De-clapham, T. Lien et al., Developmental Origin of a Bipotential Myocardial and Smooth Muscle Cell Precursor in the Mammalian Heart, Cell, vol.127, issue.6, pp.1137-1150, 2006.
DOI : 10.1016/j.cell.2006.10.028

K. Bersell, . Arab, B. Haring, and . Kuhn, Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury, Cell, vol.138, issue.2, pp.257-270, 2009.
DOI : 10.1016/j.cell.2009.04.060

F. Manasek, Embryonic development of the heart. II. Formation of the epicardium, J Embryol Exp Morphol, vol.22, pp.333-348, 1969.

S. Vincent and M. Buckingham, How to Make a Heart, Curr Top Dev Biol, vol.90, pp.1-41, 2010.
DOI : 10.1016/S0070-2153(10)90001-X

R. Dettman, J. Denetclaw, and J. Bristow, Common Epicardial Origin of Coronary Vascular Smooth Muscle, Perivascular Fibroblasts, and Intermyocardial Fibroblasts in the Avian Heart, Developmental Biology, vol.193, issue.2, pp.169-181, 1998.
DOI : 10.1006/dbio.1997.8801

N. Rosenthal and R. Harvey, Heart Development and Regeneration, 2010.

C. Cai, J. Martin, . Sun, . Cui, . Wang et al., A myocardial lineage derives from Tbx18 epicardial cells, Nature, vol.279, issue.7200, pp.104-108, 2008.
DOI : 10.1038/nature06969

B. Zhou, . Ma, . Rajagopal, . Wu, J. Domian et al., Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.208, issue.7200, pp.109-113, 2008.
DOI : 10.1038/nature07060

M. Ieda, . Tsuchihashi, . Ivey, . Ross, R. Hong et al., Cardiac Fibroblasts Regulate Myocardial Proliferation through ??1 Integrin Signaling, Developmental Cell, vol.16, issue.2, pp.233-244, 2009.
DOI : 10.1016/j.devcel.2008.12.007

URL : http://doi.org/10.1016/j.devcel.2008.12.007

S. Wu, C. Kr-chien, and . Mummery, Origins and Fates of Cardiovascular Progenitor Cells, Cell, vol.132, issue.4, pp.537-543, 2008.
DOI : 10.1016/j.cell.2008.02.002

N. Smart, . Bollini, . Kn-dube, . Vieira, . Zhou et al., De novo cardiomyocytes from within the activated adult heart after injury, Nature, vol.5, issue.7353, pp.640-644, 2011.
DOI : 10.1038/nature10188

B. Zhou, . Honor, . Ma, . Oh, J. Lin et al., Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.52, issue.1, pp.43-47, 2012.
DOI : 10.1016/j.yjmcc.2011.08.020

URL : http://doi.org/10.1016/j.yjmcc.2011.08.020

J. Chong, . Reinecke, . Iwata, A. Torok-storb, C. Stempien-otero et al., Progenitor Cells Identified by PDGFR-Alpha Expression in the Developing and Diseased Human Heart, Stem Cells and Development, vol.22, issue.13, pp.1932-1943, 2013.
DOI : 10.1089/scd.2012.0542

C. Holmes and W. Stanford, Concise Review: Stem Cell Antigen-1: Expression, Function, and Enigma, Stem Cells, vol.5, issue.Pt 25, pp.1339-1347, 2007.
DOI : 10.1634/stemcells.2006-0644

A. Asakura, A. Seale, M. Girgis-gabardo, and . Rudnicki, Myogenic specification of side population cells in skeletal muscle, The Journal of Cell Biology, vol.24, issue.1, pp.123-134, 2002.
DOI : 10.1046/j.1432-0436.2001.680407.x

B. Welm, . Sb-tepera, T. Venezia, J. Graubert, M. Rosen et al., Sca-1pos Cells in the Mouse Mammary Gland Represent an Enriched Progenitor Cell Population, Developmental Biology, vol.245, issue.1, pp.42-56, 2002.
DOI : 10.1006/dbio.2002.0625

B. Dekel, . Zangi, S. Shezen, S. Reich-zeliger, H. Eventov-friedman et al., Isolation and Characterization of Nontubular Sca-1+Lin- Multipotent Stem/Progenitor Cells from Adult Mouse Kidney, Journal of the American Society of Nephrology, vol.17, issue.12, pp.3300-3314, 2006.
DOI : 10.1681/ASN.2005020195

E. Clayton and S. Forbes, The isolation and in vitro expansion of hepatic Sca-1 progenitor cells, Biochemical and Biophysical Research Communications, vol.381, issue.4, pp.549-553, 2009.
DOI : 10.1016/j.bbrc.2009.02.079

L. Xin, D. Lawson, and O. Witte, The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis, Proceedings of the National Academy of Sciences, vol.102, issue.19, pp.6942-6947, 2005.
DOI : 10.1073/pnas.0502320102

J. Mcqualter, . Brouard, . Williams, S. Baird, . Sims-lucas et al., Endogenous Fibroblastic Progenitor Cells in the Adult Mouse Lung Are Highly Enriched in the Sca-1 Positive Cell Fraction, Stem Cells, vol.124, issue.3, pp.623-633, 2009.
DOI : 10.1634/stemcells.2008-0866

T. Akamatsu, Y. Arai, . Kosugi, . Kawasaki, . Meguro et al., Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences, Fibrogenesis & Tissue Repair, vol.6, issue.1, p.15, 2013.
DOI : 10.1186/1471-2407-7-39

C. Ito, . Li, J. Bernstein, W. Dick, and . Stanford, Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice, Blood, vol.101, issue.2, pp.517-523, 2003.
DOI : 10.1182/blood-2002-06-1918

K. Kafadar, . Yi, . Ahmad, . So, G. Rossi et al., Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration, Developmental Biology, vol.326, issue.1, pp.47-59, 2009.
DOI : 10.1016/j.ydbio.2008.10.036

J. Lajiness and S. Conway, Origin, development, and differentiation of cardiac fibroblasts, Journal of Molecular and Cellular Cardiology, vol.70, pp.2-8, 2013.
DOI : 10.1016/j.yjmcc.2013.11.003

H. Chang, . Chi, C. Dudoit, M. Bondre, D. Van-de-rijn et al., Diversity, topographic differentiation, and positional memory in human fibroblasts, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12877-12882, 2002.
DOI : 10.1073/pnas.162488599

J. Wang, . Bo, Y. Meng, Y. Wu, Y. Bao et al., A simple and fast experimental model of myocardial infarction in the mouse, Tex Heart Inst J, vol.33, pp.290-293, 2006.

B. Paylor, B. Fernandes, F. Mcmanus, and . Rossi, Tissue-resident Sca1 + PDGFRalpha + mesenchymal progenitors are the cellular source of fibrofatty infiltration in arrhythmogenic cardiomyopathy. F1000Res 2:141. Address correspondence to: Dr, 2013.