A. Aars, Aminoacyl tRNA synthetase; AIR: 5-amino -4-imidazole ribonucleotide; arCOG: Archaeal Cluster of Orthologous Genes; ASAT: Aspartate aminotransferase; BSH: Bile Salt Hydrolase; CAIR: 5-amino-4-imidazole carboxylic acid ribonucleotide; Cdc6: Cell division cycle 6; CDS: Coding DNA sequence

D. Dpl, DNA polymerase D large subunit; DPM: Dolicholphosphate mannose; DPS: DNA polymerase D small subunit; FEN-1: Flap EndoNuclease 1; GGPS: (S)-3-O-geranylgeranylglyceryl phosphate synthase; GINS: Go-Ichi-Nii-San protein; GIT: Gastro-intestinal tract

A. Wright, A. Williams, B. Winder, C. Christophersen, S. Rodgers et al., Molecular Diversity of Rumen Methanogens from Sheep in Western Australia, Applied and Environmental Microbiology, vol.70, issue.3, pp.1263-1270, 2004.
DOI : 10.1128/AEM.70.3.1263-1270.2004

P. Janssen and M. Kirs, Structure of the Archaeal Community of the Rumen, Applied and Environmental Microbiology, vol.74, issue.12, pp.3619-3625, 2008.
DOI : 10.1128/AEM.02812-07

A. Mihajlovski, M. Alric, and J. Brugère, A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene, Research in Microbiology, vol.159, issue.7-8, pp.516-521, 2008.
DOI : 10.1016/j.resmic.2008.06.007

A. Mihajlovski, J. Doré, F. Levenez, M. Alric, and J. Brugère, Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity, Environmental Microbiology Reports, vol.64, issue.2, pp.272-280, 2010.
DOI : 10.1111/j.1758-2229.2009.00116.x

B. Dridi, M. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt, Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.62, issue.Pt 8, pp.621902-1907
DOI : 10.1099/ijs.0.033712-0

G. Borrel, H. Harris, W. Tottey, A. Mihajlovski, N. Parisot et al., Genome Sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens, Journal of Bacteriology, vol.194, issue.24, pp.1946944-6945
DOI : 10.1128/JB.01867-12

G. Borrel, H. Harris, N. Parisot, N. Gaci, W. Tottey et al., Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces, Genome Announcements, vol.1, issue.4
DOI : 10.1128/genomeA.00453-13

K. Paul, J. Nonoh, L. Mikulski, and A. Brune, "Methanoplasmatales," Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens, Applied and Environmental Microbiology, vol.78, issue.23, pp.788245-8253
DOI : 10.1128/AEM.02193-12

T. Iino, H. Tamaki, S. Tamazawa, Y. Ueno, M. Ohkuma et al., Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata, Microbes and Environments, vol.28, issue.2, pp.244-250, 2013.
DOI : 10.1264/jsme2.ME12189

R. Hedderich and W. Whitman, Physiology and biochemistry of the methane-producing Archaea, The prokaryotes, pp.1050-1079, 2006.

A. Oren and G. Garrity, List of new names and new combinations previously effectively, but not validly, published, Int J Syst Evol Microbiol, vol.2013, issue.6311, pp.3931-3934

X. Huang, H. Tan, R. Long, J. Liang, and A. Wright, Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China, BMC Microbiology, vol.12, issue.1, p.237
DOI : 10.1007/BF01731581

A. Wright, C. Auckland, and D. Lynn, Molecular Diversity of Methanogens in Feedlot Cattle from Ontario and Prince Edward Island, Canada, Applied and Environmental Microbiology, vol.73, issue.13, pp.734206-4210, 2007.
DOI : 10.1128/AEM.00103-07

A. Wright, A. Toovey, and C. Pimm, Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea, Anaerobe, vol.12, issue.3, pp.134-139, 2006.
DOI : 10.1016/j.anaerobe.2006.02.002

G. Borrel, O. Toole, P. Harris, H. Peyret, P. Brugère et al., Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis, Genome Biology and Evolution, vol.5, issue.10, pp.1769-1780
DOI : 10.1093/gbe/evt128

M. Poulsen, C. Schwab, B. Jensen, R. Engberg, A. Spang et al., Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen, Nature Communications, vol.19, issue.167, p.1428, 2013.
DOI : 10.1038/ncomms2432

A. Gorlas, C. Robert, G. Gimenez, M. Drancourt, and D. Raoult, Complete Genome Sequence of Methanomassiliicoccus luminyensis, the Largest Genome of a Human-Associated Archaea Species, Journal of Bacteriology, vol.194, issue.17, pp.4745-4745
DOI : 10.1128/JB.00956-12

N. Gaci, G. Borrel, W. Tottey, O. Toole, P. Brugère et al., Archaea from the human gut: the new beginning of an old story, World J Gastroenterol

J. Brugère, G. Borrel, N. Gaci, W. Tottey, O. Toole et al., Archaebiotics, Gut Microbes, vol.137, issue.1, p.6
DOI : 10.1128/JB.00420-09

R. Mackay, C. Mcentyre, C. Henderson, M. Lever, and P. George, Trimethylaminuria: causes and diagnosis of a socially distressing condition, Clin Biochem Rev, vol.32, issue.1, p.33, 2011.

Z. Wang, E. Klipfell, B. Bennett, R. Koeth, B. Levison et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, vol.53, issue.7341, pp.47257-63, 2011.
DOI : 10.1038/nature09922

G. Srinivasan, C. James, and J. Krzycki, Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA, Science, vol.296, issue.5572, pp.2961459-1462, 2002.
DOI : 10.1126/science.1069588

J. Krzycki, Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases, Current Opinion in Chemical Biology, vol.8, issue.5, pp.484-491, 2004.
DOI : 10.1016/j.cbpa.2004.08.012

G. Borrel, N. Gaci, P. Peyret, O. Toole, P. Gribaldo et al., Unique characteristics of the pyrrolysine system in the 7 th order of methanogens: implications for the evolution of a genetic code expansion cassette, Archaea, p.374146, 2014.

K. Sheppard, J. Yuan, M. Hohn, B. Jester, K. Devine et al., From one amino acid to another: tRNA-dependent amino acid biosynthesis, Nucleic Acids Research, vol.36, issue.6, pp.1813-1825, 2008.
DOI : 10.1093/nar/gkn015

H. Ree and R. Zimmermann, Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum, Nucleic Acids Research, vol.18, issue.15, pp.4471-4478, 1990.
DOI : 10.1093/nar/18.15.4471

S. Ciesielski, K. Bulkowska, D. Dabrowska, D. Kaczmarczyk, P. Kowal et al., Ribosomal Intergenic Spacer Analysis as a Tool for Monitoring Methanogenic Archaea Changes in an Anaerobic Digester, Current Microbiology, vol.93, issue.2, 2013.
DOI : 10.1007/s00284-013-0353-2

A. Dufresne, L. Garczarek, and F. Partensky, Accelerated evolution associated with genome reduction in a free-living prokaryote, Genome Biology, vol.6, issue.2, p.14, 2005.
DOI : 10.1186/gb-2005-6-2-r14

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes, Science, vol.315, issue.5819, pp.3151709-1712, 2007.
DOI : 10.1126/science.1138140

S. Fischer, L. Maier, B. Stoll, J. Brendel, E. Fischer et al., An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA, Journal of Biological Chemistry, vol.287, issue.40, pp.28733351-33363
DOI : 10.1074/jbc.M112.377002

R. Sorek, V. Kunin, and P. Hugenholtz, CRISPR ??? a widespread system that provides acquired resistance against phages in bacteria and archaea, Nature Reviews Microbiology, vol.7, issue.3, pp.181-186, 2008.
DOI : 10.1038/nrmicro1793

R. Jansen, J. Embden, W. Gaastra, and L. Schouls, Identification of genes that are associated with DNA repeats in prokaryotes, Molecular Microbiology, vol.43, issue.6, pp.1565-1575, 2002.
DOI : 10.1128/JB.182.9.2393-2401.2000

S. Lange, O. Alkhnbashi, D. Rose, S. Will, and R. Backofen, CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems, Nucleic Acids Research, vol.41, issue.17, pp.418034-8044
DOI : 10.1093/nar/gkt606

K. Makarova, D. Haft, R. Barrangou, S. Brouns, E. Charpentier et al., Evolution and classification of the CRISPR???Cas systems, Nature Reviews Microbiology, vol.35, issue.6, pp.467-477, 2011.
DOI : 10.1038/nrmicro2577

D. Stevenson and P. Weimer, Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR, Applied Microbiology and Biotechnology, vol.89, issue.1, pp.165-174, 2007.
DOI : 10.1007/s00253-006-0802-y

M. Arumugam, J. Raes, E. Pelletier, L. Paslier, D. Yamada et al., Enterotypes of the human gut microbiome, Nature, issue.7346, pp.473174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

D. Prangishvili, P. Forterre, and R. Garrett, Viruses of the Archaea: a unifying view, Nature Reviews Microbiology, vol.103, issue.11, pp.837-848, 2006.
DOI : 10.1038/nrmicro1527

URL : https://hal.archives-ouvertes.fr/hal-00107400

D. Prangishvili, R. Garrett, and E. Koonin, Evolutionary genomics of archaeal viruses: Unique viral genomes in the third domain of life, Virus Research, vol.117, issue.1, pp.52-67, 2006.
DOI : 10.1016/j.virusres.2006.01.007

E. Pelve, W. Martens?habbena, D. Stahl, and R. Bernander, Mapping of active replication origins in vivo in thaum?and euryarchaeal replicons

K. Raymann, P. Forterre, C. Brochier-armanet, and S. Gribaldo, Global Phylogenomic Analysis Disentangles the Complex Evolutionary History of DNA Replication in Archaea, Genome Biology and Evolution, vol.6, issue.1, pp.192-212
DOI : 10.1093/gbe/evu004

URL : https://hal.archives-ouvertes.fr/hal-00957432

P. Forterre, S. Gribaldo, D. Gadelle, and M. Serre, Origin and evolution of DNA topoisomerases, Biochimie, vol.89, issue.4, pp.427-446, 2007.
DOI : 10.1016/j.biochi.2006.12.009

URL : https://hal.archives-ouvertes.fr/hal-00194416

C. Brochier-armanet, P. Forterre, and S. Gribaldo, Phylogeny and evolution of the Archaea: one hundred genomes later, Current Opinion in Microbiology, vol.14, issue.3, pp.274-281, 2011.
DOI : 10.1016/j.mib.2011.04.015

URL : https://hal.archives-ouvertes.fr/hal-00598326

M. White and S. Bell, Holding it together: chromatin in the Archaea, Trends in Genetics, vol.18, issue.12, pp.621-626, 2002.
DOI : 10.1016/S0168-9525(02)02808-1

K. Makarova, A. Sorokin, P. Novichkov, Y. Wolf, and E. Koonin, Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea, Biology Direct, vol.2, issue.1, p.33, 2007.
DOI : 10.1186/1745-6150-2-33

M. Huynen, T. Dandekar, and P. Bork, Variation and evolution of the citric-acid cycle: a genomic perspective, Trends in Microbiology, vol.7, issue.7, pp.281-291, 1999.
DOI : 10.1016/S0966-842X(99)01539-5

A. Brown, S. Hoopes, R. White, and C. Sarisky, Purine biosynthesis in archaea: variations on a theme, Biology Direct, vol.6, issue.1, p.63, 2011.
DOI : 10.1101/gr.849004

S. Sakai, Y. Takaki, S. Shimamura, M. Sekine, T. Tajima et al., Genome Sequence of a Mesophilic Hydrogenotrophic Methanogen Methanocella paludicola, the First Cultivated Representative of the Order Methanocellales, PLoS ONE, vol.17, issue.7, p.22898, 2011.
DOI : 10.1371/journal.pone.0022898.s009

C. Erkel, M. Kube, R. Reinhardt, and W. Liesack, Genome of Rice Cluster I Archaea--the Key Methane Producers in the Rice Rhizosphere, Science, vol.313, issue.5785, pp.313370-372, 2006.
DOI : 10.1126/science.1127062

D. Santos, P. Fang, Z. Mason, S. Setubal, J. Dixon et al., Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes, BMC Genomics, vol.13, issue.1, p.162, 2012.
DOI : 10.1111/j.1432-1033.1995.0666h.x

M. Lai, T. Hong, and R. Gunsalus, Glycine Betaine Transport in the Obligate Halophilic Archaeon Methanohalophilus portucalensis, Journal of Bacteriology, vol.182, issue.17, pp.5020-5024, 2000.
DOI : 10.1128/JB.182.17.5020-5024.2000

M. Roessler, K. Pfluger, H. Flach, T. Lienard, G. Gottschalk et al., Identification of a Salt-Induced Primary Transporter for Glycine Betaine in the Methanogen Methanosarcina mazei Go1, Applied and Environmental Microbiology, vol.68, issue.5, pp.2133-2139, 2002.
DOI : 10.1128/AEM.68.5.2133-2139.2002

W. Fricke, H. Seedorf, A. Henne, M. Krüer, H. Liesegang et al., The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis, Journal of Bacteriology, vol.188, issue.2, pp.642-658, 2006.
DOI : 10.1128/JB.188.2.642-658.2006

B. Samuel, E. Hansen, J. Manchester, P. Coutinho, B. Henrissat et al., Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut, Proceedings of the National Academy of Sciences, vol.104, issue.25, pp.10410643-10648, 2007.
DOI : 10.1073/pnas.0704189104

P. Mittl and W. Schneider-brachert, Sel1-like repeat proteins in signal transduction, Cellular Signalling, vol.19, issue.1, pp.20-31, 2007.
DOI : 10.1016/j.cellsig.2006.05.034

T. Tallant, L. Paul, and J. Krzycki, The MtsA subunit of the methylthiol: coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer, J Biol Chem, issue.6, pp.2764485-4493, 2001.

A. Kaster, M. Goenrich, H. Seedorf, H. Liesegang, A. Wollherr et al., More than 200 genes required for methane formation from H 2 and CO 2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus, Archaea, p.973848, 2011.

P. Rouvière, J. Escalante-semerena, and R. Wolfe, Component A2 of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum, J Bacteriol, vol.162, issue.1, pp.61-66, 1985.

J. Raymond, J. Siefert, C. Staples, and R. Blankenship, The Natural History of Nitrogen Fixation, Molecular Biology and Evolution, vol.21, issue.3, pp.541-554, 2004.
DOI : 10.1093/molbev/msh047

D. Graham, S. Taylor, R. Wolf, and S. Namboori, Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase, Biochemical Journal, vol.2, issue.3, pp.467-478, 2009.
DOI : 10.1016/S0167-7012(02)00254-3

D. Graham, M. Graupner, H. Xu, and R. White, Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase.???, European Journal of Biochemistry, vol.261, issue.19, pp.2685176-5188, 2001.
DOI : 10.1046/j.0014-2956.2001.02451.x

D. Graham, H. Xu, and R. White, Identification of Coenzyme M Biosynthetic Phosphosulfolactate Synthase, Journal of Biological Chemistry, vol.277, issue.16, pp.13421-13429, 2002.
DOI : 10.1074/jbc.M201011200

M. Graupner, H. Xu, and R. White, Identification of an Archaeal 2-Hydroxy Acid Dehydrogenase Catalyzing Reactions Involved in Coenzyme Biosynthesis in Methanoarchaea, Journal of Bacteriology, vol.182, issue.13, pp.3688-3692, 2000.
DOI : 10.1128/JB.182.13.3688-3692.2000

K. Schlegel and V. Muller, bioenergetics in methanogenic archaea, Biochemical Society Transactions, vol.174, issue.1, pp.421-426
DOI : 10.1111/j.1365-2958.1995.18050925.x

I. Anderson, L. Ulrich, B. Lupa, D. Susanti, I. Porat et al., Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens, PLoS ONE, vol.47, issue.6, p.5797, 2009.
DOI : 10.1371/journal.pone.0005797.s001

A. Kaster, J. Moll, K. Parey, and R. Thauer, Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea, Proceedings of the National Academy of Sciences, vol.108, issue.7, pp.2981-2986, 2011.
DOI : 10.1073/pnas.1016761108

R. Thauer, A. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, Methanogenic archaea: ecologically relevant differences in energy conservation, Nature Reviews Microbiology, vol.50, issue.8, pp.579-591, 2008.
DOI : 10.1038/nrmicro1931

V. Moparthi and C. Hägerhäll, The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits, Journal of Molecular Evolution, vol.286, issue.5-6, pp.72-77, 2011.
DOI : 10.1007/s00239-011-9447-2

S. Bäumer, T. Ide, C. Jacobi, J. A. Gottschalk, G. Deppenmeier et al., The F420H 2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases, J Biol Chem, issue.24, pp.27517968-17973, 2000.

C. Welte and U. Deppenmeier, Membrane-Bound Electron Transport in Methanosaeta thermophila, Journal of Bacteriology, vol.193, issue.11, pp.2868-2870, 2011.
DOI : 10.1128/JB.00162-11

Q. Tran, J. Bongaerts, D. Vlad, and G. Unden, Requirement for the Proton-Pumping NADH Dehydrogenase I of Escherichia Coli in Respiration of NADH to Fumarate and Its Bioenergetic Implications, European Journal of Biochemistry, vol.154, issue.1, pp.155-160, 1997.
DOI : 10.1006/jmbi.1993.1488

C. Welte, C. Krätzer, and U. Deppenmeier, Involvement of Ech hydrogenase in energy conservation of Methanosarcina???mazei, FEBS Journal, vol.69, issue.Pt 11, pp.3396-3403, 2010.
DOI : 10.1111/j.1742-4658.2010.07744.x

J. Meuer, H. Kuettner, J. Zhang, R. Hedderich, and W. Metcalf, Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation, Proceedings of the National Academy of Sciences, vol.99, issue.8, pp.995632-5637, 2002.
DOI : 10.1073/pnas.072615499

A. Baykov, A. Malinen, H. Luoto, and R. Lahti, Pyrophosphate-fueled Na + and H + transport in prokaryotes, Microbiol Mol Biol R, vol.2013, issue.772, pp.267-276

L. Prat, I. Heinemann, H. Aerni, J. Rinehart, O. Donoghue et al., Carbon source-dependent expansion of the genetic code in bacteria, Proceedings of the National Academy of Sciences, vol.109, issue.51, pp.21070-21075
DOI : 10.1073/pnas.1218613110

M. Gaston, R. Jiang, and J. Krzycki, Functional context, biosynthesis, and genetic encoding of pyrrolysine, Current Opinion in Microbiology, vol.14, issue.3, pp.342-349, 2011.
DOI : 10.1016/j.mib.2011.04.001

I. Heinemann, O. Donoghue, P. Madinger, C. Benner, J. Randau et al., guanylyltransferase by neutral evolution, Proceedings of the National Academy of Sciences, vol.106, issue.50, pp.21103-21108, 2009.
DOI : 10.1073/pnas.0912072106

J. Krzycki, Translation of UAG as Pyrrolysine In Recoding: Expansion of Decoding Rules Enriches Gene Expression, pp.53-77

D. Longstaff, S. Blight, L. Zhang, K. Green-church, and J. Krzycki, In vivo contextual requirements for UAG translation as pyrrolysine, Molecular Microbiology, vol.144, issue.1, pp.229-241, 2007.
DOI : 10.1073/pnas.87.12.4660

K. Veit, C. Ehlers, and R. Schmitz, Effects of Nitrogen and Carbon Sources on Transcription of Soluble Methyltransferases in Methanosarcina mazei Strain Go1, Journal of Bacteriology, vol.187, issue.17, pp.6147-6154, 2005.
DOI : 10.1128/JB.187.17.6147-6154.2005

S. Bailey, A. Rycroft, and J. Elliott, Production of amines in equine cecal contents in an in vitro model of carbohydrate overload, Journal of Animal Science, vol.80, issue.10, pp.2656-2662, 2002.
DOI : 10.2527/2002.80102656x

E. Smith and G. Macfarlane, Studies on Amine Production in the Human Colon: Enumeration of Amine forming Bacteria and Physiological Effects of Carbohydrate and pH, Anaerobe, vol.2, issue.5, pp.285-297, 1996.
DOI : 10.1006/anae.1996.0037

R. Koeth, Z. Wang, B. Levison, J. Buffa, E. Org et al., Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis, Nature Medicine, vol.129, issue.5, pp.576-585, 2013.
DOI : 10.1007/s001840200192

A. Mitchell, A. Chappell, and K. Knox, Metabolism of Betaine in the Ruminant, Journal of Animal Science, vol.49, issue.3, pp.764-774, 1979.
DOI : 10.2527/jas1979.493764x

A. Neill, D. Grime, and R. Dawson, Conversion of choline methyl groups through trimethylamine into methane in the rumen, Biochemical Journal, vol.170, issue.3, pp.529-535, 1978.
DOI : 10.1042/bj1700529

J. Benstead, G. King, and H. Williams, Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils, Appl Environ Microb, vol.64, issue.3, pp.1091-1098, 1998.

C. Fraser, J. Gocayne, O. White, M. Adams, R. Clayton et al., The Minimal Gene Complement of Mycoplasma genitalium, Science, vol.270, issue.5235, pp.397-404, 1995.
DOI : 10.1126/science.270.5235.397

S. Shigenobu, H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa, Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp, APS Nat, vol.407, issue.6800, pp.81-86, 2000.

E. Waters, M. Hohn, I. Ahel, D. Graham, M. Adams et al., The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism, Proceedings of the National Academy of Sciences, vol.100, issue.22, pp.10012984-12988, 2003.
DOI : 10.1073/pnas.1735403100

R. Aziz, D. Bartels, A. Best, M. Dejongh, T. Disz et al., The RAST Server: Rapid Annotations using Subsystems Technology, BMC Genomics, vol.9, issue.1, p.75, 2008.
DOI : 10.1186/1471-2164-9-75

A. Delcher, K. Bratke, E. Powers, and S. Salzberg, Identifying bacterial genes and endosymbiont DNA with Glimmer, Bioinformatics, vol.23, issue.6, pp.673-679, 2007.
DOI : 10.1093/bioinformatics/btm009

A. Bairoch and B. Boeckmann, The SWISS-PROT protein sequence data bank, Nucleic Acids Research, vol.19, issue.suppl, p.2247, 1991.
DOI : 10.1093/nar/19.suppl.2247

P. Gardner, J. Daub, J. Tate, E. Nawrocki, D. Kolbe et al., Rfam: updates to the RNA families database, Nucleic Acids Research, vol.37, issue.Database, pp.37-136, 2009.
DOI : 10.1093/nar/gkn766

P. Schattner, A. Brooks, and T. Lowe, The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs, Nucleic Acids Research, vol.33, issue.Web Server, pp.686-689, 2005.
DOI : 10.1093/nar/gki366

H. Taquist, Y. Cui, and D. Ardell, TFAM 1.0: an online tRNA function classifier, Nucleic Acids Research, vol.35, issue.Web Server, pp.350-353, 2007.
DOI : 10.1093/nar/gkm393

URL : http://doi.org/10.1093/nar/gkm393

D. Laslett and B. Canback, ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences, Nucleic Acids Research, vol.32, issue.1, pp.11-16, 2004.
DOI : 10.1093/nar/gkh152

S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.253389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Research, vol.35, issue.Web Server, pp.52-57, 2007.
DOI : 10.1093/nar/gkm360

URL : https://hal.archives-ouvertes.fr/hal-00194414

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats, Nucleic Acids Research, vol.36, issue.Web Server, pp.145-148, 2008.
DOI : 10.1093/nar/gkn228

URL : https://hal.archives-ouvertes.fr/hal-00297231

S. Lange, O. Alkhnbashi, D. Rose, S. Will, and R. Backofen, CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems, Nucleic Acids Research, vol.41, issue.17, pp.418034-8044
DOI : 10.1093/nar/gkt606

Y. Zhou, Y. Liang, K. Lynch, J. Dennis, and D. Wishart, PHAST: A Fast Phage Search Tool, Nucleic Acids Research, vol.39, issue.suppl, pp.347-352, 2011.
DOI : 10.1093/nar/gkr485

J. Grant and P. Stothard, The CGView Server: a comparative genomics tool for circular genomes, Nucleic Acids Research, vol.36, issue.Web Server, pp.181-184, 2008.
DOI : 10.1093/nar/gkn179

J. Oliveros, VENNY: an interactive tool for comparing lists with Venn Diagrams, 2007.

M. Magrane, UniProt Knowledgebase: a hub of integrated protein data, Database, vol.2011, issue.0, p.9, 2011.
DOI : 10.1093/database/bar009

Y. Moriya, M. Itoh, S. Okuda, A. Yoshizawa, and M. Kanehisa, KAAS: an automatic genome annotation and pathway reconstruction server, Nucleic Acids Research, vol.35, issue.Web Server, pp.182-185, 2007.
DOI : 10.1093/nar/gkm321

URL : http://doi.org/10.1093/nar/gkm321

H. Li, V. Benedito, M. Udvardi, and P. Zhao, TransportTP: A two-phase classification approach for membrane transporter prediction and characterization, BMC Bioinformatics, vol.10, issue.1, p.418, 2009.
DOI : 10.1186/1471-2105-10-418

Q. Ren, K. Chen, and I. Paulsen, TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Research, vol.35, issue.Database, pp.274-279, 2007.
DOI : 10.1093/nar/gkl925

S. Götz, J. García-gómez, J. Terol, T. Williams, S. Nagaraj et al., High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Research, vol.36, issue.10, pp.363420-3435, 2008.
DOI : 10.1093/nar/gkn176

L. Johnson, S. Eddy, and E. Portugaly, Hidden Markov model speed heuristic and iterative HMM search procedure, BMC Bioinformatics, vol.11, issue.1, p.431, 2010.
DOI : 10.1186/1471-2105-11-431

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

H. Philippe, MUST, a computer package of Management Utilities for Sequences and Trees, Nucleic Acids Research, vol.21, issue.22, pp.5264-5272, 1993.
DOI : 10.1093/nar/21.22.5264

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evolutionary Biology, vol.10, issue.1, p.210, 2010.
DOI : 10.1186/1471-2148-10-210

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.
DOI : 10.1093/bioinformatics/btl446

F. Ronquist, M. Teslenko, P. Van-der-mark, D. Ayres, A. Darling et al., MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space, Systematic Biology, vol.61, issue.3, pp.61539-542
DOI : 10.1093/sysbio/sys029

I. Hofacker, Vienna RNA secondary structure server, Nucleic Acids Research, vol.31, issue.13, pp.313429-3431, 2003.
DOI : 10.1093/nar/gkg599